Published on Web 03/24/2007
Carbohydrate-Coated Supramolecular Structures:
Transformation of Nanofibers into Spherical Micelles
Triggered by Guest Encapsulation
Ja-Hyoung Ryu, Eunji Lee, Yong-beom Lim, and Myongsoo Lee*
Contribution from the Center for Supramolecular Nano-Assembly and Department of Chemistry,
Yonsei UniVersity, Seoul 120-749, Korea
Received January 9, 2007; E-mail: mslee@yonsei.ac.kr
Abstract: Triblock rigid-flexible dendritic block molecules consisting of a rigid aromatic segment as a stem
segment, carbohydrate-branched dendrons as a flexible head, and a hydrophobic alkyl chain were
synthesized and characterized. The carbohydrate conjugate molecule based on a methyl group as a
hydrophobic tail, in the solid state, self-assembles into a 1D nanostructure, whereas the molecule based
on a longer hydrophobic tail self-assembles into 2D nanosheets, as confirmed by X-ray scatterings. In
aqueous solution, however, both molecules were observed to self-assemble into carbohydrate-coated
cylindrical aggregates with a uniform diameter, as confirmed by dynamic light scatterings and transmission
electron microscopic (TEM) investigations. Notably, these cylindrical objects reversibly transformed into
spherical objects on addition of guest molecules. Investigation of the interactions of the carbohydrate-
coated nanostructures with E. coli cells showed that both nano-objects could immobilize bacterial cells,
while the degrees of immobilization were significantly dependent on the shape of nanostructure. These
results demonstrated that the supramolecular materials that are responsive to external stimuli can provide
novel opportunities to control many biological activities.
Introduction
reported, the self-assembly that plays a key role in living systems
provides a powerful approach toward the fabrication of complex
Controlled self-assembly of incompatible molecular compo-
nents can lead to a variety of nanostructures including spherical
micelles, vesicles, nanofibers, toroids, and tubes.1 The construc-
tion of supramolecular architectures by the self-assembly of
designed molecules is thus a subject of great current interest
and a challenging topic of interdisciplinary research in chem-
istry, biology, and materials science.2 In particular, self-
organization of carbohydrate conjugate molecules can endow
nanostructures with biological functions as multivalent ligands.3,4
Although many different designs of multivalent ligands such
as glycoprotiens,5 linear polymers,6 and dendrimers7 have been
nanoarchitectures. Precise control of molecular arrangements
of self-assembling molecules at the supramolecular level is
essential to get well-defined nanoscopic architectures as well
as desired biological functions.8 Introducing a rigid segment
into a self-assembling system has been reported to enhance
aggregation stability.9 In addition to stability, another important
issue regarding the preparation of these self-assembling systems
is their capability to respond to external stimuli such as pH,
temperature, and interaction with guest molecules and to interact
with biological receptors.10-12 To obtain precisely controlled
(4) (a) de la Fuente, J. M.; Barrientos, A. G.; Rojas, T. C.; Rojo, J.; Can˜ada,
J.; Ferna´ndez, A.; Penade´s, S. Angew. Chem., Int. Ed. 2001, 40, 2258-
2261. (b) Lin, C.-C.; Yeh, Y.-C.; Yang, C.-Y.; Chen, C.-L.; Chen, G.-F.;
Chen, C.-C.; Wu, Y.-C. J. Am. Chem. Soc. 2002, 124, 3508-3509. (c)
Osaki, F.; Kanamori, T.; Sando, S.; Sera, T.; Aoyama, Y. J. Am. Chem.
Soc. 2004, 126, 6520-6521.
(5) Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357-2364.
(6) (a) Disney, M. D.; Zheng, J.; Swager, T. M.; Seeberger, P. H. J. Am. Chem.
Soc. 2004, 126, 13343-13346. (b) Gestwicki, J. E.; Kiessling, L. L. Nature
2002, 415, 81-84. (c) Sasaki, K.; Nishida, Y.; Tsurumi, T.; Uzawa, H.;
Kondo, H.; Kobayashi, K. Angew. Chem., Int. Ed. 2002, 41, 4463-4467.
(d) Cario, C. W.; Gestwicki, J. E.; Kanai, M.; Kiessling, L. L. J. Am. Chem.
Soc. 2002, 124, 1615-1619.
(7) (a) Wolfenden, E. K.; Cloninger, M. J. J. Am. Chem. Soc. 2005, 127,
12168-12169. (b) Roy, R.; Kim, J. M. Angew. Chem., Int. Ed. 1998, 38,
369-372. (c) Woller, E. K.; Walter, E. D.; Morgan, J. R.; Singel, D. J.;
Cloninger, M. J. J. Am. Chem. Soc. 2003, 125, 8820-8826.
(8) (a) Wong, G. C. L.; Tang, J. X.; Lin, A.; Li, Y.; Janmey, P. A.; Safinya,
C. R. Science 2000, 288, 2035-2039. (b) Elemans, J. A. A. W.; Rowan,
A. E.; Nolte, R. J. M. J. Mater. Chem. 2003, 13, 2661-2670. (c) Hartgerink,
J. D.; Beniash, E.; Stupp, S. I. Science 2001, 294, 1684-1687. (d) Percec,
V.; Dulcey, A. E.; Balagurusamy, V. S. K.; Miura, Y.; Smidrkal, J.; Peterca,
M.; Nummelin, S.; Edlund, U.; Hudson, S. D.; Heiney, P. A.; Duan, H.;
Magonov, S. N.; Vinogradov, S. A. Nature 2004, 430, 764-768.
(1) (a) Jain, S.; Bates, F. S. Science 2003, 300, 460-464. (b) Discher, D. E.;
Eisenberg, A. Science 2002, 297, 967-973. (c) Yang, W.-Y.; Ahn, J.-H.;
Yoo, Y.-S.; Oh, N.-K.; Lee, M. Nat. Mater. 2005, 5, 399-402. (d) Shimizu,
T.; Masuda, M.; Minamikawa, H. Chem. ReV. 2005, 105, 1401-1444. (e)
Kim, J.-K.; Lee, E.; Huang, Z.; Lee, M. J. Am. Chem. Soc. 2006, 128,
14022-14023. (f) Ryu, J.-H.; Cho, B.-K.; Lee, M. Bull. Korean Chem.
Soc. 2006, 27, 1270-1282. (g) Kawasaki, T.; Tokuhiro, M.; Kimizuka,
N.; Kunitake, T. J. Am. Chem. Soc. 2001, 123, 6792-6800.
(2) (a) Lehn, J. M. Supramolecular Chemistry, Concepts and PerspectiVes;
VCH: Weinheim, Germany, 1995. (b) Hoeben, F. J. M.; Jonkheijm, P.;
Meijer, E. W.; Schenning, A. P. H. J. Chem. ReV. 2005, 105, 1491-1546.
(c) Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M.; Sommerdijk,
N. A. J. M. Chem. ReV. 2001, 101, 4039-4070. (d) Ajayaghosh, A.;
Vijayakumar, C.; Varghese, R.; George, S. J. Angew. Chem., Int. Ed. 2006,
45, 456-460. (e) Motoyanagi, J.; Fukushima, T.; Ishii, N.; Aida, T. J. Am.
Chem. Soc. 2006, 128, 4220-4221. (f) Zhang, S. G. Nat. Biotechol. 2003,
21, 1171-1178. (g) Lee, M.; Cho, B.-K.; Zin, W.-C. Chem. ReV. 2001,
101, 3869-3892. (h) Chen, B.; Baumeister, U.; Pelzl, G.; Das, M. K.; Zeng,
X.; Ungar, G.; Tschierske, C. J. Am. Chem. Soc. 2005, 127, 16578-16591.
(3) (a) Thoma, G.; Katopodis, A. G.; Voelcker, N.; Duthaler, R. O.; Streiff,
M. B. Angew. Chem., Int. Ed. 2002, 41, 3195-3198. (b) Aoyama, Y.;
Kanamori, T.; Nakai, T.; Sasaki, T.; Horiuchi, S.; Sando, S.; Niidome, T.
J. Am. Chem. Soc. 2003, 125, 3455-3457.
9
4808
J. AM. CHEM. SOC. 2007, 129, 4808-4814
10.1021/ja070173p CCC: $37.00 © 2007 American Chemical Society