1972
S.-K. Anandan et al. / Bioorg. Med. Chem. Lett. 15 (2005) 1969–1972
17. Pikul, S.; Ohleer, N. E.; Ciszewski, G.; Laueersweiler, M.
C.; Almstead, N. G.; De, B.; Mieling, G. E. J. Med. Chem.
2001, 44, 2499–2502.
18. Michaelides, M. R.; Dellaria, J. F.; Gong, J.; Holms, J. H.;
Davidson, S. K. Bioorg. Med. Chem. Lett. 2001, 11, 1553.
19. Peng, S. X.; Strojnowski, M. J.; Hu, J. K.; Smith, B. J.;
Eichhold, T. H.; Wehmeyer, K. R.; Pikel, S.; Almstead, N.
G. J. Chromatogr. B 1999, 724, 181.
adjacent to a carbonyl moiety could have similar biden-
tate chelating geometry with the zinc ion (Fig. 3) as in
SAHA. The reduced potency for 2e or 3d compared to
SAHA would suggest that the zinc chelation might be
weaker with either the mercaptoethylamide or the mer-
captoacetamide. Further SAR studies are in progress
to improve the HDAC potency, physiological properties
and overall pharmacological behavior of this class of
inhibitors over the hydroxamate class.
20. Sugihara, K.; Kitamura, S.; Ohta, S.; Tatsumi, K.
Xenobiotica 2000, 30, 457.
21. Suzuki, T.; Ando, T.; Tsuchiya, K.; Fukazawa, N.; Saito,
A. J. Med. Chem. 1999, 42, 3001.
References and notes
22. Furumai, R.; Matsuyama, A.; Kohashi, N.; Lee, K.-H.;
Nishiyama, M.; Nakajima, H.; Tanaka, A.; Komatsu, Y.;
Nishino, N.; Yoshida, M.; Horinouchi, S. Cancer Res.
2002, 62, 4916.
23. Frey, R. R.; Wada, C. K.; Garland, R. B.; Curtin, M. L.;
Michaelides, M. R. Bioorg. Med. Chem. Lett. 2002, 12,
3443.
24. Frey, R. R.; Wada, C. K.; Garland, R. B.; Curtin, M. L.;
Michaelides, M. R. Bioorg. Med. Chem. Lett. 2003, 13,
3331.
1. Marks, P. A.; Rifkind, R. A.; Richon, V. M.; Breslow, R.;
Miller, T.; Kelly, W. K. Nat. Rev. Cancer 2001, 1, 194.
2. Kelly, W. K.; OÕConnor, O. A.; Marks, P. A. Expert Opin.
Invest. Drugs 2002, 11, 1695.
3. Marks, P. A.; Richon, V. M.; Breslow, R.; Rifkind, R. A.
Curr. Opin. Oncol. 2001, 13, 477.
4. Marks, P. A.; Rifkind, R. A.; Richon, V. M.; Breslow, R.
Clin. Cancer Res. 2001, 7, 759.
25. Kapustin, G. V.; Fejer, G.; Gronlund, J. L.; McCafferty,
D. G.; Seto, E.; Etzkorn, F. A. Org. Lett. 2003, 5, 3053.
26. Wu, T. Y. H.; Hassig, C.; Wu, Y.; Ding, S.; Shultz, P. G.
Bioorg. Med. Chem. Lett. 2004, 14, 449.
5. Meinke, P. T.; Liberator, P. Curr. Med. Chem. 2001, 8,
211.
6. Grozinger, C. M.; Schreiber, S. L. Chem. Biol. 2002, 9, 3.
7. Jung, M. Curr. Med. Chem. 2001, 8, 1505.
27. Ondetti, M. A.; Rubin, B.; Cushman, D. W. Science 1977,
196, 2735.
28. Whittaker, M.; Floyd, C. D.; Brown, P.; Gearing, A. J.
Chem. Rev. 1999, 99, 2735.
8. Curtin, M. L. Expert Opin. Ther. Pat. 2002, 12, 1375.
9. Finnin, M. S.; Donigian, J. R.; Cohen, A.; Richon, V. M.;
Rifkind, R. A.; Marks, P. A.; Breslow, R.; Pavletich, N. P.
Nature 1999, 401, 188.
29. Suzuki, T.; Kouketsu, A.; Matsuura, A.; Kohara, A.;
Ninomiya, S.; Kohda, K.; Miyata, N. Bioorg. Med. Chem.
Lett. 2004, 13, 3331.
30. Suzuki, T.; Nagano, Y.; Kouketsu, A.; Matsuura, A.;
Maruyama, S.; Kurotaki, M.; Nakagawa, H.; Miyata, N.
J. Med. Chem. 2005, 48, 1019.
10. John, R.; Somoza, J. R.; Skene, R. J.; Katz, B. A.; Mol,
C.; Ho, J. D.; Jennings, A. J.; Luong, C.; Arvai, A.;
Buggy, J. J.; Chi, E.; Tang, J.; Sang, B.; Verner, E.;
Wynands, R.; Leahy, E. M.; Dougan, D. R.; Snell, G.;
Navre, M.; Knuth, M. W.; Swanson, R. V.; McRee, D. E.;
Tari, S. W. Structure 2004, 12, 1325.
31. Suzuki, T.; Matsuura, A.; Kouketsu, A.; Nakagawa, H.;
Miyata, N. Bioorg. Med. Chem. Lett. 2005, 15, 331.
32. Chen, B.; Petukhov, P. A.; Jung, M.; Velena, A.; Eliseeva,
E.; Dritschilo, A.; Kozikowski, A. P. Bioorg. Med. Chem.
Lett. 2005, 15, 1389.
11. Vannini, A.; Volpari, C.; Filocamo, G.; Casavola, E. C.;
Brunetti, M.; Renzoni, D.; Chakravarty, P.; Paolini, C.;
Francesco, R. D.; Gallinari, P.; Steinkuhler, C.; Marco, S.
¨
F. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 15064.
12. Martin, M. S.; Mou, Y.; Perez, L. B.; Sharma, S.; Smith,
T.; Sorensen, E.; Taplin, F.; Trogani, N.; Versace, R.;
Walker, H.; Weltchek-Engler, S.; Wood, A.; Wu, A.;
Atadja, P.; Remiszewski, S. W.; Sambucetti, L. C.; Bair,
K. W.; Bontempo, J.; Cesarz, D.; Chandramouli, N.;
Chen, R.; Cheung, M.; Cornell-Kennon, S.; Dean, K.;
Diamantidis, G.; France, D.; Green, M. A.; Howell, K. L.;
Kashi, R.; Kwon, P.; Lassota, P. J. Med. Chem. 2003, 46,
4609.
13. Matsuyama, A.; Yoshimatsu, Y.; Shimazu, T.; Sumida,
Y.; Osada, H.; Komatsu, Y.; Nishino, N.; Khochbin, S.;
Horinouchi, S.; Yoshida, M. EMBO J. 2002, 21,
6820.
14. Haggarty, S. J.; Koeller, K. M.; Wong, J. C.; Grozinger,
C. M.; Schreiber, S. L. Proc. Natl. Acad. Sci. U.S.A 2003,
100, 4389.
33. In vitro fluorescent histone deacetylase assay: HDAC
inhibition assay was performed using the HDAC fluores-
cent activity assay kit (Biomol Research Laboratories,
Plymouth Meeting, PA). HeLa cell nuclear extract, which
contains a number of HDAC isozymes and other nuclear
factors, was used as the source of HDAC activity. The
final substrate concentration in the assay mixture was
50 lM. The reaction was allowed to proceed for 10 min at
room temperature before stopping the reaction. Test
compounds were prepared as 20 mM stock solutions in
DMSO (Molecular Biology grade, Sigma–Aldrich Co., St.
Louis, MO) and stored at À70 °C. DMSO had no
significant effect on the activity of this assay at concen-
trations up to 5%; the final DMSO concentration in the
wells will be no more than 2%. Assays were performed in
white polystyrene 96-well half-area assay plates (Corning,
NY) and measured on a Wallac 1420 fluorescent plate
reader (Wallac Oy, Turku, Finland) with an excitation
wavelength of 355 nm, an emission wavelength of 460 nm,
and a 1 s signal averaging time.
15. Wong, J. C.; Hong, R.; Schreiber, S. L. J. Am. Chem. Soc.
2003, 125, 5586.
16. Glaser, K. B.; Li, J.; Pease, L. J.; Staver, M. J.; Marcotte,
P. A.; Guo, J.; Frey, R. R.; Garland, R. B.; Heyman, H.
R.; Wada, C. K.; Vasudevan, A.; Michaelides, M. R.;
Davidsen, S. K.; Curtin, M. L. Biochem. Biophys. Res.
Commun. 2004, 325, 683.
34. Mai, A.; Esposito, M.; Sbardella, G.; Massa, S. A. Org.
Prep. Proced. Int. 2001, 33, 391.