RSC Advances
Paper
16) (Scheme 9) delivered (S,S)-17b, and the resulting epoxide
underwent KHMDS-catalyzed cascade cyclization to give corre-
sponding (ꢀ)-b-18b. Aer that, the total synthesis of (ꢀ)-b-
hydrastine would be completed through the N-deprotection and
the known methylation14 reaction. Regarding to the late-stage N-
deprotection of (ꢀ)-b-18b, several conditions, such as Mg/MeOH,22
SmI2/THF,23 Na-naphthalide/THF,24 had been screened, but failing
to afford (ꢀ)-b-2 (see the ESI†) and further studies on the late-stage
N-deprotection are still in progress.
U. P. Singh, R. N. Jha, V. B. Pandey and M. B. Pandey, Folia
Microbiol., 2003, 48, 363–368.
4 K. Goswami, V. Yadava, V. Padmanabhan and S. Banerjee,
Acta Crystallogr., 1993, 49, 504–506.
5 J. Huang and G. A. R. Johnston, Br. J. Pharmacol., 1990, 99,
727–730.
6 B. Guo, X. Li, S. Song, M. Chen, M. Cheng, D. Zhao and F. Li,
Oncol. Rep., 2016, 35, 2246–2256.
7 (a) M. Shamma and V. S. Georgiev, Tetrahedron Lett., 1974,
15, 2339–2342; (b) K. Iwasa, M. Kamigauchi, M. Sugiura
and N. Takao, J. Nat. Prod., 1987, 50, 1083–1088.
8 E. Hope, F. L. Pyman, F. G. P. Remfry and R. Robinson, J.
Chem. Soc., 1931, 236–247.
Conclusions
In conclusion, we have completed an efficient and stereo-
controlled approach to total synthesis of the phthalide tetra-
hydroisoquinoline alkaloid (ꢀ)-b-hydrastine [(ꢀ)-b-1]. The key
elements include a high enantioselective epoxidation using the
Shi ketone catalyst and an intramolecular acid-catalyzed
cascade cyclization in one pot, and a late-stage epimerization.
Furthermore, it should be noted that the facile and enantiose-
lective construction of the core phthalide tetrahydroisoquino-
line scaffold was made possible by the CF3COOH-catalyzed or
KHMDS-catalyzed epoxide ring-opening cascade cyclization
from chiral epoxide under very mild conditions. In this reac-
tion, the phthalide tetrahydroisoquinoline scaffold was enan-
tioselectively constructed with one C–N bond and one C–C bond
formed simultaneously. Efforts toward the asymmetric total
syntheses of other phthalide tetrahydroisoquinoline alkaloids,
such as (ꢀ)-a-noscapine, and the structure-related alkaloids, are
currently ongoing in our laboratory. To conclude, the chemistry
described herein would serve as an efficient alternative strategy
to synthesize biologically active phthalide tetrahydroisoquino-
line alkaloids and their derivatives.
9 R. D. Haworth, A. R. Pinder and R. Robinson, Nature, 1950,
165, 529.
10 (a) J. L. Moniot and M. Shamma, J. Org. Chem., 1979, 44,
4337–4342; (b) J. L. Moniot and M. Shamma, J. Am. Chem.
Soc., 1976, 98, 6714–6715.
11 (a) T. Shono, Y. Usui and H. Hamaguchi, Tetrahedron Lett.,
1980, 21, 1351–1354; (b) T. Shono, H. Hamaguchi,
M. Sasaki, S. Fujita and K. Nagami, J. Org. Chem., 1983, 48,
1621–1628; (c) K. Orito, M. Miyazawa, R. Kanbayashi,
M. Tokuda and H. Suginome, J. Org. Chem., 1999, 64,
6583–6596.
12 L. Na, D. Zhao, S. Song, L. Sun and M. Cheng, Acta Chim. Sin.,
2011, 69, 356–361.
13 Z. Varga, G. Blasko, G. Dornyei and C. Szantay, Acta Chim.
Hung., 1991, 128, 831–837.
14 J. Li, Y. Liu, X. Song, T. Wu, J. Meng, Y. Zheng, Q. Qin,
D. Zhao and M. Cheng, Org. Lett., 2019, 21, 7149–7153.
15 (a) Z.-X. Wang, Y. Tu, M. Frohn, J.-R. Zhang and Y. Shi, J. Am.
Chem. Soc., 1997, 119, 11224–11235; (b) Y. Tu, Z.-X. Wang
and Y. Shi, J. Am. Chem. Soc., 1996, 118, 9806–9807.
16 (a) J. Kang, G. J. Lim, S. K. Yoon and M. Y. Kim, J. Org. Chem.,
1995, 60, 564–577; (b) S. Mio, Y. Kumagawa and S. Sugai,
Tetrahedron, 1991, 47, 2133–2144.
Conflicts of interest
There are no conicts to declare.
17 D. Shabashov and O. Daugulis, Org. Lett., 2006, 8, 4947–4949.
18 B. Wang, X.-Y. Wu, O. A. Wong, B. Nettles, M.-X. Zhao,
D. Chen and Y. Shi, J. Org. Chem., 2009, 74, 3986–3989.
19 (a) L. Shu and Y. Shi, Tetrahedron, 2001, 57, 5213–5218; (b)
L. Shu and Y. Shi, Tetrahedron Lett., 1999, 40, 8721–8724.
20 (a) T. Angelini, F. Fringuelli, D. Lanari, F. Pizzo and
L. Vaccaro, Tetrahedron Lett., 2010, 51, 1566–1569; (b)
N. Oguni, Y. Miyagi and K. Itoh, Tetrahedron Lett., 1998,
39, 9023–9026; (c) D. L. Fox, A. A. Robinson, J. B. Frank
and R. N. Salvatore, Tetrahedron Lett., 2003, 44, 7579–7582.
21 D. Knight, S. L. E. Overman and G. Pairaudeau, J. Am. Chem.
Soc., 1995, 117, 5776–5788.
22 (a) C. Qi, F. Hasenmaile, V. Gandon and D. Lebœuf, ACS
Catal., 2018, 8, 1734–1739; (b) M. Nagamoto, T. Yanagi,
T. Nishimura and H. Yorimitsu, Org. Lett., 2016, 18, 4474–
4477.
23 V. Pace, J. P. Rae and D. J. Procter, Org. Lett., 2014, 16, 476–
479.
Acknowledgements
We gratefully acknowledge the Program for Innovative Research
Team of the Ministry of Education and the Program for Liaon-
ing Innovative Research Team in University.
References
1 G. Blasko, D. J. Gula and M. Shamma, J. Nat. Prod., 1982, 45,
105–122.
2 (a) S. Y. Yin, Y. M. Kim, J. J. Lee, C. M. Jin, Y. J. Yang,
S.-K. Park, S. K. Yoo and M. K. Lee, Biol. Pharm. Bull., 2007,
30, 1547–1550; (b) S. Y. Yin, Y. M. Kim, J. J. Lee, C. M. Jin,
Y. J. Yang, J. J. Ma, M. H. Kang, M. Kai and M. K. Lee,
Neuropharmacology, 2004, 47, 1045–1052; (c) M. K. Lee,
Y. H. Zhang, J. S. Shin and S. S. Lee, Med. Sci. Res., 1997,
25, 619–620.
24 N. Chakor, S. Dallavalle, L. Scaglioni and L. Merlini, Eur. J.
Org. Chem., 2010, 6217–6223.
3 (a) R. N. Jha, M. B. Pandey, A. K. Singh, S. Singh and
V. P. Singh, Nat. Prod. Res., 2009, 23, 250–255; (b) M. Goel,
18958 | RSC Adv., 2020, 10, 18953–18958
This journal is © The Royal Society of Chemistry 2020