(40%). 1H NMR (500 MHz, CDCl3): d 7.64 (s, 3H), 7.60 (d, 6H,
3J = 8.7 Hz), 7.05 (d, 6H, 3J = 8.7 Hz), 6.96–6.98 (m, 6H), 6.87–
6.88 (m, 15H), 5.02 (s, 6H), 4.13–4.19 (m, 24H), 3.90–3.92 (m,
polarization corrections and empirical absorption corrections,
based on redundant data at varying effective azimuthal angles,
were applied to the data set. The structure was solved by
direct methods, completed by subsequent Fourier syntheses
and refined with full-matrix least-squares methods against |F2|
data. All non-hydrogen atoms were refined anisotropically. The
thermal parameter for atom C(26) was restrained using the
ISOR command. There was evidence for a slight disorder for
one of the OCH2CH2O linkages but this was not modelled.
All hydrogen atoms were treated as idealized contributions.
Scattering factors and anomalous dispersion coefficients are
contained in the SHELXTL 5.03 program library12
◦
24H), 3.82 (s, 24H). Mp 115–116 C. HR-ESI-MS: m/z [19 +
Na]+: calc.: 1757.7445, found: 1757.7448.
Preparation of [2]rotaxane, 20.4OTf, [3]rotaxane, 21.8OTf and
[4]rotaxane, 22.12OTf
Crown ether 19 (0.053 g, 0.031 mmol) and 1.2OTf (0.110 g,
0.214 mmol) were dissolved in nitromethane (20 mL) and stirred
overnight. 4-tert-Butylbenzyl bromide (0.100 g, 0.440 mmol)
and 3 mL of a saturated NaOTf(aq) were added and the
two-phase reaction stirred for 7 days. The organic layer was
separated, dried over anhydrous MgSO4 and evaporated. The
orange residue was taken up in MeCN (1 mL) and filtered. The
solvent was removed from the filtrate and the residue subjected
to column chromatography [SiO2: methanol–nitromethane–2 M
NH4Cl(aq) (6 : 1 : 3) up to DMF–2 M NH4Cl(aq) (1 : 1)]. Like
fractions were combined and anion exchanged with NaOTf(aq)
to yield the products as orange–red solids. Overall chemical yield
85%. 20.4OTf: 0.0243 g (32% of total material) (Rf = 0.63). 1H
Crystal data. C31H38O9, M = 554.61, triclinic, space group
˚
P1 (no. 1), a = 8.5216(13), b = 8.6643(13), c = 10.4987(16) A, a =
◦
3
˚
92.857(3), b = 96.328(3), c = 113.673(3) , V = 701.82(18) A ,
Z = 1, Dc = 1.312 g cm−3, l(Mo-Ka) = 0.096 mm−1, colourless
block; 2474 independent measured reflections, F2 refinement,
R1 = 0.0961, wR2 = 0.1034 [I > 2r(I)], R1 = 0.2339, wR2 =
0.2423 (all data), goodness-of-fit = 1.42, 361 parameters, 9
restraints.
CCDC reference number 258420.
See http://www.rsc.org/suppdata/ob/b4/b418772e/ for cry-
stallographic data in .cif or other electronic format.
3
NMR (500 MHz, CD3CN): d 9.33 (d, 4H, J = 6.4 Hz), 8.90
3
3
(d, 4H, J = 6.5 Hz), 8.23 (d, 4H, J = 6.4 Hz), 8.16 (d, 4H,
3J = 6.5 Hz), 7.73–7.81 (m, 9H), 7.50 (d, 4H, J = 8.3 Hz),
3
3
7.39 (d, 4H, J = 8.3 Hz), 6.91–7.12 (m, 20H), 6.83 (d, 1H,
Acknowledgements
4J = 1.5 Hz), 6.62–6.64 (m, 3H), 6.58 (dd, 1H, J = 1.5, J =
8.2 Hz), 6.40–6.42 (m, 2H), 5.71 (d, 4H, J = 4.1 Hz), 5.61
(s, 4H), 5.08 (s, 4H), 4.65 (s, 2H), 4.02–4.17 (m, 40H), 3.77–
3.80◦(m, 16H), 3.64–3.66 (m, 16H), 1.30 (s, 18H). Mp 137–
138 C. HR-ESI-MS: m/z [20.2OTf]2+: calc.: 1333.5312, found:
1333.5374 [20.OTf]3+: calc.: 839.3701, found: 839.3750, [20]4+:
calc.: 592.2896, found: 592.2961. 21.8OTf: 0.036 g (33% of total
4
3
We thank the Natural Sciences and Engineering Council
of Canada for financial support of this research and Dr
Shuangquan Zhang for recording all ESI-MS.
References
1 For some examples of polyrotaxanes, see: (a) T. Ooya, H. Ut-
sunomiya, M. Eguchi and N. Yui, Bioconjugate Chem., 2005, 16,
62; (b) H. Hirose, H. Sano, G. Mizutani, M. Eguchi, T. Ooya and N.
Yui, Langmuir, 2004, 20, 2852; (c) Y. Liu, H. Wang, H.-Y. Zhang and
P. Liang, Chem. Commun., 2004, 2266; (d) T. Oku, Y. Furusho and T.
Takata, Angew. Chem., Int. Ed., 2004, 43, 966; (e) M. Okada and A.
Harada, Org. Lett., 2004, 6, 361; (f) H. W. Gibson, D. S. Nagvekar,
N. Yamaguchi, S. Bhattacharjee, H. Wang, M. J. Vergne and D. M.
Hercules, Macromolecules, 2004, 37, 7514; (g) M. K. Sarvothaman
and H. Ritter, Macromol. Rapid Commun., 2004, 25, 1948; (h) J. J.
Michels, M. J. O’Connell, P. N. Taylor, J. S. Wilson, F. Cacialli and
H. L. Anderson, Chem. Eur. J., 2003, 9, 6167; (i) M. J. Hwang,
H. S. Bae, S. J. Kim and B. Jeong, Macromolecules, 2004, 37, 8820;
(j) M. P. L. Werts, M. Van Den Boogaard, G. M. Tsivgoulis and G.
Hadziioannou, Macromolecules, 2003, 36, 7004; (k) T. Azzam, N. A.
Peppas, S. Slomkowski and A. J. Domb, Polym. Adv. Technol., 2002,
13, 788; (l) J.-P. Sauvage, J.-M. Kern, G. Bidan, B. Divisia-Blohorn
and P.-L. Vidal, New J. Chem, 2002, 26, 1287; (m) K.-M. Park, D.
Whang, E. Lee, J. Heo and K. Kim, Chem. Eur. J, 2002, 8, 498;
(n) C. S. A. Fraser, M. C. Jennings and R. J. Puddephatt, Chem.
Commun., 2001, 14, 1310; (o) E. Lee, J. Kim, J. Heo, D. Whang and
K. Kim, Angew. Chem., Int. Ed., 2001, 40, 399; (p) J. Buey and T. M.
Swager, Angew. Chem., Int. Ed., 2000, 39, 608; (q) E. Lee, J. Heo and
K. Kim, Angew. Chem., Int. Ed., 2000, 39, 2699; (r) C. Gong and H.
Gibson, in Molecular Catenanes, Rotaxanes and Knots, Wiley-VCH,
New York, 1999, p. 277; (s) P. E. Mason, W. S. Bryant and H. W.
Gibson, Macromolecules, 1999, 32, 1559; (t) P.-L. Vidal, B. Divisia-
Blohorn, G. Bidan, J.-M. Kern, J.-P. Sauvage and J.-L. Hazemann,
Inorg. Chem., 1999, 38, 4203; (u) F. M. Raymo and J. F. Stoddart,
Trends Polym. Sci., 1996, 4, 208; (v) F. M. Raymo and J. F. Stoddart,
Chem. Rev., 1999, 99, 1643; (w) C. Gong and H. W. Gibson, Angew.
Chem., Int. Ed., 1998, 37, 310; (x) O. Noll and H. Ritter, Macromol.
Rapid Commun., 1997, 18, 53; (y) S. S. Zhu, P. J. Carroll and T. M.
Swager, J. Am. Chem. Soc., 1996, 118, 8713; (z) M. Born, T. Koch
and H. Ritter, Macromol. Chem. Phys., 1995, 196, 1761.
1
material) (Rf = 0.51). H NMR (500 MHz, CD3CN): d 9.34
3
3
(d, 8H, J = 6.8 Hz), 8.93 (d, 8H, J = 6.7 Hz), 8.26 (d, 8H,
3J = 6.8 Hz), 8.20 (d, 8H, J = 6.7 Hz), 7.81–7.85 (m, 9H),
3
7.51 (d, 8H, 3J = 8.4 Hz), 7.40 (d, 8H, 3J = 8.4 Hz), 7.13–7.15
3
3
(m, 2H), 7.08 (d, 6H, J = 8.7 Hz), 7.04 (d, 1H, J = 8.3 Hz),
6.93–6.97 (m, 4H), 6.89 (d, 2H, 3J = 8.3 Hz), 6.83 (d, 2H, 4J =
1.2 Hz), 6.64–6.66 (m, 4H), 6.56 (dd, 2H, 4J = 8.3, 3J = 1.2 Hz),
6.41–6.42 (m, 4H), 5.72 (d, 8H, J = 4.0 Hz), 5.62 (s, 8H), 5.09
(s, 2H), 4.64 (s, 4H), 4.01–4.14 (m, 56H), 3.77–3.81 (m, 8H),
3.66 (d, 8H, 3J = 1.9 Hz), 1.27 (s, 36H). Mp 165–166 ◦C. HR-
ESI-MS: m/z [21.6OTf]2+: calc.: 1948.6370, found: 1948.6509.
[21.5OTf]3+: calc.: 1249.4406, found: 1249.4468. [21.4OTf]4+:
calc.: 899.8425, found: 899.8655. [21.3OTf]5+: calc.: 690.0836,
found: 690.0938. [21.2OTf]6+: calc.: 550.2443, found: 550.2519.
22.12OTf: 0.0497 g (35% of total material) (Rf = 0.35). 1H NMR
(500 MHz, CD3CN): d 9.34 (d, 12H, 3J = 8.9 Hz), 8.95 (d, 12H,
3
3
3J = 8.9 Hz), 8.29 (d, 12H, J = 8.9 Hz), 8.22 (d, 12H, J =
3
8.9 Hz), 7.87 (s, 3H), 7.83 (d, 6H, J = 8.5 Hz), 7.73 (d, 12H,
3
3
J = 2.9 Hz), 7.50 (d, 12H, J = 8.4 Hz), 7.40 (d, 12H, J =
3
4
8.4 Hz), 7.09 (d, 6H, J = 8.7 Hz), 6.83 (d, 3H, J = 1.5 Hz),
6.69 (d, 3H, 3J = 8.2 Hz), 6.64–6.66 (m, 6H), 6.55 (dd, 3H, 4J =
1.5, 3J = 8.2 Hz), 6.39–6.42 (m, 6H), 5.63 (s, 12H), 4.64 (s, 6H),
4.01–4.10 (m, 72H), 1.27 (s, 54H). Mp 190–191 ◦C. HR-ESI-MS:
m/z [22.5OTf]7+: calc.: 626.1036, found 626.1077. LR-ESI-MS
[22.4OTf]8+: calc.: 529.2, found 529.2.
X-Ray structure determination of crown ether, 5
Colourless crystals of 5 were grown by slow diffusion of hexanes
into a saturated chloroform solution. Crystals were mounted
on a short glass fibre attached to a tapered copper pin and the
crystal cooled to 173.0(1) K. A full hemisphere of data were
collected with 30 s frames on a Bru¨ker APEX diffractometer
fitted with a CCD based detector. Decay (<1%) was monitored
by 50 standard data frames measured at the beginning and end
of data collection. The data was relatively weak due to the poor
quality of the crystals. Diffraction data and unit-cell parameters
were consistent with the assigned space group. Lorentzian
2 For some examples of polycatenanes, see: (a) N. Watanabe, Y. Ikari,
N. Kihara and T. Takata, Macromolecules, 2004, 37, 6663; (b) L.
Raehm, D. G. Hamilton and J. K. M. Sanders, Synlett, 2002, 11, 1743;
(c) E.-Q. Gao, Z.-M. Wang, C.-S. Liao and C.-H. Yan, New J. Chem.,
2002, 26, 1096; (d) Y. Geerts, in Molecular Catenanes, Rotaxanes and
Knots, Wiley-VCH, New York, 1999, p. 247; (e) J.-L. Weidmann,
J.-M. Kern, J.-P. Sauvage, D. Muscat, S. Mullins, W. Kohler, C.
Rosenauer, H. J. Rader, K. Martin and Y. Geerts, Chem. Eur. J., 1999,
5, 1841; (f) C. Hamers, F. M. Raymo and J. F. Stoddart, Eur. J. Org.
1 4 0 0
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 1 3 9 3 – 1 4 0 1