SCHEME 1
Remote Stereocontrol in the Nazarov
Reaction: A New Approach to the Core of
Roseophilin
Ernesto G. Occhiato,*,† Cristina Prandi,*,‡
Alessandro Ferrali,† and Antonio Guarna†
Dipartimento di Chimica Organica “U. Schiff”, Polo
Scientifico - Universita` di Firenze, Via della Lastruccia 13,
I-50019 Sesto Fiorentino, Italy, and Dipartimento di
Chimica Generale ed Organica Applicata, Universita` di
Torino, Corso Massimo D’Azeglio, 48, I-10125 Torino, Italy
ernesto.occhiato@unifi.it; cristina.prandi@unito.it
Received March 3, 2005
pound, can be prepared in an earlier phase which is
followed by the RCM of the terminal double bonds
present on the two chains at C2 and C5.2a,b,g,k This
sequence has been first used by Fuchs in his synthesis
of 2, which required, however, 13 steps to prepare key
intermediate 5 in racemic form.2b The stimulus to revisit
Fuchs’ formal synthesis of roseophilin came from our
recent finding that the Nazarov reaction of divinyl
ketones in which one of the double bonds is embedded
in a properly substituted N-heterocyclic structure pro-
ceeds in highly stereocontrolled fashion to give cis-
disubstituted cyclopenta-fused heterocycles.4 On these
grounds, we envisioned a faster route to obtain bicyclic
ketopyrrole 5 in enantiopure form by electrocyclization
of pyrroline 7 (Scheme 1) in which the correctly oriented
buten-3-yl chain on the heterocycle serves the purpose
of controlling the absolute stereochemistry of the C4 atom
bearing the isopropyl group in the Nazarov product 6
while being already set for the RCM following Fuchs’
strategy from 5.
Three different procedures are compared to obtain properly
substituted divinyl ketones in which one of the double bonds
is embedded in a five-membered heterocyclic structure and
therefore suitable to produce cyclopenta-fused pyrrole de-
rivatives by the acid-catalyzed Nazarov reaction. These, on
treatment with TFA, afforded 2,4-cis-disubstituted 2,3,4,5-
tetrahydro-1H-cyclopenta[b]pyrrol-6-ones with high stereo-
control. One of these Nazarov products was oxidized to the
corresponding 4,5-dihydro-1H-cyclopenta[b]pyrrol-6-one de-
rivative, thus obtaining an enantiopure key intermediate in
the total synthesis of roseophilin.
Roseophilin (1, Scheme 1) is a macrocyclic pigment
isolated from Streptomyces griseoviridis that exhibits
potent cytotoxicity against human cancer cell lines.1 This,
and the unique ansa-bridged cyclopenta[b]pyrrole struc-
tural core of roseophilin, have stimulated the interest of
several groups in the partial or total synthesis of this
heterocycle.2 As pointed out by Fu¨rstner in his exhaustive
review on the chemistry and biology of roseophilin,3 all
synthetic approaches toward 1 are based on the same
disconnection that includes the condensation of the
macrotricyclic cyclopenta-fused pyrrole 2 with the
heterocyclic portion 3. The procedures by which inter-
mediate 2 has been synthesized can in turn be grouped
in two general strategies. The most employed relies
on the construction of the ansa bridge moiety which
anchors suitable functionalities to eventually assem-
bly the 1-azafulvene moiety by diverse cyclization
reactions.2c-f,h-j,l-o Alternatively, the isopropyl-substitut-
ed ketopyrrole 4 (Scheme 1), or a closely related com-
(2) (a) Kim, S. H.; Fuchs, P. L. Tetrahedron Lett. 1996, 37, 2545-
2548. (b) Kim, S. H.; Figueroa, I.; Fuchs, P. L. Tetrahedron Lett. 1997,
38, 2601-2604. (c) Fu¨rstner, A.; Weintritt, H. J. Am. Chem. Soc. 1997,
119, 2944-2945. (d) Fu¨rstner, A.; Weintritt, H. J. Am. Chem. Soc.
1998, 120, 2817-2825. (e) Mochizuki, T.; Itoh, E.; Shibata, N.;
Nakatami, S.; Katoh, T.; Terashima, S. Tetrahedron Lett. 1998, 39,
6911-6914. (f) Robertson, J.; Hatley, R. J. D. Chem. Commun. 1999,
1455-1456. (g) Fagan, M. A.; Knight, D. W. Tetrahedron Lett. 1999,
40, 6117-6120. (h) Fu¨rstner, A.; Gastner, T.; Weintritt, H. J. Org.
Chem. 1999, 64, 2361-2366. (i) Harrington, P. E.; Tius, M. A. Org.
Lett. 1999, 1, 649-651. (j) Robertson, J.; Hatley, R. J. D.; Watkin, D.
J. J. Chem. Soc., Perkin Trans. 1 2000, 3389-3396. (k) Bamford, S.
J.; Luker, T.; Speckamp, W. N.; Hiemstra, H. Org. Lett. 2000, 2, 1157-
1160. (l) Trost, B. M.; Doherty, G. A. J. Am. Chem. Soc. 2000, 122,
3801-3810. (m) Harrington, P. E.; Tius, M. A. J. Am. Chem. Soc.. 2001,
123, 8509-8514. (n) Boger, D. L.; Hong, J. J. Am. Chem. Soc. 2001,
123, 8515-8519. (o) Viseux, E. M. E.; Parsons, P. J.; Pavey, J. B. J.
Carter, C. M. Pinto, I. Synlett 2003, 1856-1858.
* To whom correspondence should be addressed. (E.G.O.) Tel: +39-
055-4573480. Fax: +39-055-4573531. (C.P.) Tel: +39-011-6707641.
Fax: 0116707642.
(3) Fu¨rstner, A. Angew. Chem., Int. Ed. 2003, 42, 3582-3603.
(4) (a) Occhiato, E. G.; Prandi, C.; Ferrali, A.; Guarna, A.; Venturello,
P. J. Org. Chem. 2003, 68, 9728-9741. (b) Prandi, C.; Ferrali, A.;
Guarna, A.; Venturello, P.; Occhiato, E. G. J. Org. Chem. 2004, 69,
7705-7709.
† Universita` di Firenze.
‡ Universita` di Torino.
(1) Hayakawa, Y.; Kawakami, K.; Seto, H.; Furihata, K. Tetrahedron
Lett. 1992, 33, 2701-2704.
10.1021/jo0504058 CCC: $30.25 © 2005 American Chemical Society
Published on Web 04/19/2005
4542
J. Org. Chem. 2005, 70, 4542-4545