L. Mun˜oz et al. / Tetrahedron Letters 46 (2005) 3311–3313
3313
added and the mixture was allowed to react at rt for an
additional hour. The solvent was evaporated off and the
residue extracted with ether. The combined organic phases
were washed with brine, dried, and the residue chromato-
graphed on silica gel eluting with hexane–ether (95:5) to
give the acylated sulfone 3c (78% yield). 1H NMR
(300 MHz, CDCl3): d 7.81 (dm, J = 8.7 Hz, 2H), 7.74 (tt,
J1 = 7.5 Hz, J2 = 1.2 Hz, 1H), 7.60 (tm, J = 7.2 Hz, 2H);
5.79 (ddt, J1 = 17.1 Hz, J2 = 10.2 Hz, J3 = 6.6 Hz, 1H),
5.01–4.90 (m, 2H), 4.60 (dd, J1 = 10.8 Hz, J2 = 4.2 Hz,
1H), 1.97 (m, 4H), 1.21 (m, 12H) ppm. 13C NMR
(75 MHz, CDCl3): d 185.47 (q, J = 38.3 Hz, COCF3),
139.03, 136.22, 134.93, 129.56, 129.37, 114.62 (q,
J = 291.9 Hz, COCF3), 114.18, 69.90, 33.69, 29.09, 28.93,
28.88, 28.86, 28.75, 28.54, 26.53 ppm. 19F NMR
Acknowledgements
We gratefullyacknowledge CICYT (AGL2003-06599-
C02-01, PTR 1995-0656-OP) and Generalitat de Catalu-
nya (2001SGR-00342) for financial support.
References and notes
´
1. Hodge, C. N.; Aldrich, P. E.; Fernandez, C. H.; Otto, M.
J.; Rayner, M. M.; Wong, Y. N.; Erickson-Viitanen, S.
Antiviral Chem. Chemother. 1994, 5, 257–262; Patel, D. V.;
Rielly-Gauvin, K.; Ryono, D. E.; Free, C. A.; Smith, S.
A.; Petrillo, E. D. J. Med. Chem. 1993, 36, 2431–2447;
Gelb, M. H.; Svaren, J. P.; Abeles, R. H. Biochemistry
1985, 24, 1813–1817.
(282 MHz): d À79.06 (s) ppm. IR (film) t 1758 cmÀ1
.
21. Katritzky, A. R.; Abdel-Fattah, A. A. A.; Wang, M. J.
Org. Chem. 2003, 68, 1443–1446.
22. For a review, see: Grossert, J. S. In The Chemistry of
Sulphones and Sulphoxides; Patai, S., Rappoport, Z.,
Stirling, C. J. M., Eds.; Wiley-Interscience: Chichester,
1988, Chapter 20.
2. Linderman, R. J.; Leazer, J.; Roe, R. M.; Venkatesh, K.;
Selinsky, B. S.; London, R. E. Pestic. Biochem. Physiol.
1988, 31, 187–194; Rosell, G.; Herrero, S.; Guerrero, A.
Biochem. Biophys. Res. Commun. 1996, 226, 287–292.
3. Koutek, B.; Prestwich, G. D.; Howlett, A. C.; Chin, S. A.;
Salehani, D.; Akhavan, N.; Deutsch, D. G. J. Biol. Chem.
1994, 269, 22937–22940.
23. Larcheveque, M.; Sanner, C. Tetrahedron 1988, 44, 6407–
6418.
4. Patel, D. V.; Rielly-Gauvin, K.; Ryono, D. E. Tetrahedron
Lett. 1988, 29, 4665–4668.
24. Robin, S.; Huet, F.; Fauve, A.; Veschambre, H. Tetra-
hedron: Asymmetry 1993, 4, 239–246.
´
´
5. Begue, J. P.; Bonnet-Delpon, D. Tetrahedron 1991, 47,
3207–3258.
25. Kunzer, H.; Stahnke, M.; Sauer, G.; Wiechert, R. Tetra-
¨
hedron Lett. 1991, 32, 1949–1952.
´
6. Blay, G.; Fernandez, I.; Marco-Aleixandre, A.; Monje, B.;
26. Desulfonylation of sulfone 3c. Representative procedure
(method A). Freshlyprepared aluminium amalgam was
obtained byimmersing Al foil (200 mg, 8.6 g matoms/
mmol of sulfone, 99.8% Aldrich), cut into small pieces,
into a 2% aq HgCl2 solution for 2 min (Corey, E. J.;
Chaykovsky, M. J. Am. Chem. Soc. 1965, 87, 1345–1353).
Then the amalgam was added in four portions (50 mg/h)
into a solution of sulfone 3c (0.86 mmol) in a mixture
THF/H2O (9:1) (18 mL). The reaction mixture was heated
to reflux for 4 h, cooled, filtered and the solid was washed
with THF. After evaporation of the solvent, the residue
was taken up in ether, washed with brine and dried. The
solvent was removed and the crude purified bycolumn
chromatographyon silica gel to give the TFMK 4c6 (75%
Pedro, J. R.; Ruiz, R. Tetrahedron 2002, 58, 8565–8571.
7. Kim, S.; Kavali, R. Tetrahedron Lett. 2002, 43, 7189–7191.
8. Ryuki, K.; Isao, S.; Akio, Y. Bull. Chem. Soc. Jpn. 2001,
74, 371–376.
9. Kesavan, V.; Bonnet-Delpon, D.; Begue, J. P.; Srikanth,
A.; Chandrasekaran, S. Tetrahedron Lett. 2000, 41, 3327–
3330.
10. Wiedemann, J.; Heiner, T.; Mloston, G.; Prakash, G. K.
S.; Olah, G. A. Angew. Chem., Int. Ed. 1998, 37, 820–821.
11. Yokoyama, Y.; Mochida, K. Synlett 1997, 907–908.
12. Boivin, J.; El Kaim, L.; Zard, S. Z. Tetrahedron Lett. 1992,
33, 1285–1288; Boivin, J.; El Kaim, L.; Zard, S. Z.
Tetrahedron 1995, 51, 2573–2584.
13. Villuendas, I.; Parrilla, A.; Guerrero, A. Tetrahedron 1994,
50, 12673–12684.
14. Renou, M.; Lucas, P.; Malo, E.; Quero, C.; Guerrero, A.
´
´
yield). 1H NMR (300 MHz, CDCl3):
d 5.80 (ddt,
J1 = 17.1 Hz, J2 = 10.2 Hz, J3 = 6.6 Hz, 1H), 5.02–4.90
(m, 2H), 2.70 (t, J = 7.8 Hz, 2H), 2.03 (m, 2H), 1.65 (m,
2H), 1.28 (m, 12H) ppm. 13C NMR (75 MHz, CDCl3): d
191.58 (q, J = 34.7 Hz, COCF3), 139.12, 115.56 (q,
J = 290.4 Hz, COCF3), 114.09, 36.32, 33.76, 29.33, 29.26,
29.13, 29.04, 28.87, 28.69, 22.33 ppm. 19F NMR
´
Chem. Senses 1997, 22, 407–416; Bau, J.; Martınez, D.;
Renou, M.; Guerrero, A. Chem. Senses 1999, 24, 473–480;
Riba, M.; Sans, A.; Bau, P.; Grolleau, G.; Renou, M.;
Guerrero, A. J. Chem. Ecol. 2001, 27, 1879–1897; Quero,
C.; Rosell, G.; Jimenez, O.; Rodriguez, S.; Bosch, M. P.;
(282 MHz): d À79.88 (s) ppm. IR (film) t 1765 cmÀ1
.
´
Guerrero, A. Bioorg. Med. Chem. 2003, 11, 1047–1055;
Renou, M.; Guerrero, A. Annu. Rev. Entomol. 2000, 48,
605–630.
MS (EI), m/z (%): 250 (M+, 0.96).
Desulfonylation of sulfone 3g. Representative procedure
(method B). Under Ar 0.16 g (0.46 mmol) of acylated
sulfone 3g was dissolved in 23 mL of a 0.1 M solution of
SmI2 in THF (2.3 mmol). The solution was cooled to
À20 °C and then anhydrous HMPA (1.8 mL) was slowly
added. The mixture was stirred for 1 h, left to warm to rt
and the reaction poured into NH4Cl satd solution. The
solvent was removed and the residue extracted with ether.
Conventional work up led to a residue, which was
chromatographed on silica gel to afford pure 4g (70 mg,
15. Kobayashi, Y.; Taguchi, T.; Kanuma, N.; Ikekawa, N.;
Oshida, J. Tetrahedron Lett. 1981, 22, 4309–4312.
16. Camps, F.; Gasol, V.; Guerrero, A. Synthesis 1987, 511–
512.
17. Durst, T. In Comprehensive Organic Chemistry, The
Synthesis and Reactions of Organic Compounds; New
York: Paragon, 1979; Vol. 3.
18. Trost, B. M.; Braslau, R. J. Org. Chem. 1988, 53, 532–537;
Labadie, S. S. J. Org. Chem. 1989, 54, 2496–2498.
19. Crandall, J. K.; Pradat, C. J. Org. Chem. 1984, 50, 1327–
1329.
20. Acylation of sulfone 2c: Representative procedure. To a
stirred solution of sulfone 2c (3.93 mmol) dissolved in
5 mL of anhydrous THF was added, under Ar at À78 °C,
3.9 mL of a 1.4 M solution of n-butyllithium in hexane
(5.50 mmol). Then ethyl trifluoroacetate (39.30 mmol) was
1
73%). H NMR (300 MHz, CDCl3): d 5.33 (m, 2H), 2.70
(t, J = 7.5 Hz, 2H), 2.02 (m, 4H), 1.68 (m, 2H), 1.39 (m,
2H), 0.95 (t, J = 7.5 Hz, 3H). 13C NMR (75 MHz, CDCl3):
d 191.50 (q, J = 34.6 Hz, COCF3), 132.45, 128.00, 115.56
(q, J = 290.7 Hz, COCF3), 36.23, 28.73, 26.57, 21.94,
20.51, 14.28. 19F NMR (282 MHz, CDCl3): d À79.89 (s).
IR (film)
t . Exact mass: calculated for
1765 cmÀ1
C10H15F3O: 208.107500. Found: 208.106787.