Published on Web 04/19/2005
In Situ Selection of Lead Compounds by Click Chemistry:
Target-Guided Optimization of Acetylcholinesterase Inhibitors
Antoni Krasin´ski,† Zoran Radic´,‡ Roman Manetsch,† Jessica Raushel,†
Palmer Taylor,‡ K. Barry Sharpless,†,§ and Hartmuth C. Kolb*,†,§
Contribution from the Department of Chemistry and the Skaggs Institute for Chemical Biology,
The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and
the Department of Pharmacology, #0636, UniVersity of California, San Diego,
9500 Gilman DriVe, La Jolla, California 92093
Received November 18, 2004; E-mail: hckolb@scripps.edu
Abstract: The target-guided, in situ click chemistry approach to lead discovery has been successfully
employed for discovering acetylcholinesterase (AChE) inhibitors by incubating a selected enzyme/tacrine
azide combination with a variety of acetylene reagents that were not previously known to interact with the
enzyme’s peripheral binding site. The triazole products, formed by the enzyme, were identified by HPLC-
mass spectrometry analysis of the crude reaction mixtures. The target-guided lead discovery search was
also successful when performed with reagent mixtures containing up to 10 components. From 23 acetylene
reagents, the enzyme selected two phenyltetrahydroisoquinoline (PIQ) building blocks that combined with
the tacrine azide within the active center gorge to form multivalent inhibitors that simultaneously associate
with the active and peripheral binding sites. These new inhibitors are up to 3 times as potent as our previous
phenylphenanthridinium-derived compounds, and with dissociation constants as low as 33 femtomolar,
they are the most potent noncovalent AChE inhibitors known. In addition, the new compounds lack a
permanent positive charge and aniline groups and possess fewer fused aromatic rings. Remarkably, despite
the high binding affinity, the enzyme displayed a surprisingly low preference for one PIQ enantiomer over
the other.
guided synthesis,15,16 and kinetically controlled target-guided
synthesis.17-25 The latter approach uses irreversible reactions
Introduction
By employing the biological targets themselves for as-
sembling inhibitors within the confines of their binding sites,
target-guided synthesis (TGS) promises to revolutionize lead
discovery. The newly formed inhibitors usually display much
higher binding affinities for their biological targets than the
individual components, since they simultaneously engage in
multiple binding interactions.1,2 In principle, lead discovery by
TGS is independent of the function of the target, since it relies
solely on its ability to hold the reagents in close proximity until
they become connected via the “arranged” chemical reaction.
As long as 20 years ago, Rideout et al. reported a marked
synergism between the cytotoxic effects of decanal and N-
amino-guanidines, which they suggested to result from the self-
assembly of cytotoxic hydrazones inside cells.3,4 Since then,
several approaches to target-guided synthesis have been devel-
oped: dynamic combinatorial chemistry,5-14 stepwise target-
to unite reagents inside the protein’s binding pockets. Most
(6) Ramstro¨m, O.; Lehn, J.-M. ChemBioChem 2000, 1, 41-48.
(7) Lehn, J.-M.; Eliseev, A. V. Science 2001, 291, 2331-2332.
(8) Bunyapaiboonsri, T.; Ramstro¨m, O.; Lohmann, S.; Lehn, J.-M.; Peng, L.;
Goeldner, M. ChemBioChem 2001, 2, 438-444.
(9) Eliseev, A. V. Pharm. News 2002, 9, 207-215.
(10) Ramstro¨m, O.; Lehn, J.-M. Nat. ReV. Drug DiscoVery 2002, 1, 26-36.
(11) Otto, S. Curr. Opin. Drug DiscoVery DeV. 2003, 6, 509-520.
(12) Erlanson, D. A.; Braisted, A. C.; Raphael, D. R.; Randal, M.; Stroud, R.
M.; Gordon, E. M.; Wells, J. A. Proc. Natl. Acad. Sci. U.S.A. 2000, 97,
9367-9372.
(13) Erlanson, D. A.; Lam, J. W.; Wiesmann, C.; Luong, T. N.; Simmons, R.
L.; DeLano, W. L.; Choong, I. C.; Burdett, M. T.; Flanagan, W. M.; Lee,
D.; Gordon, E. M.; O’Brien, T. Nat. Biotechnol. 2003, 21, 308-314.
(14) Ramstro¨m, O.; Lohmann, S.; Bunyapaiboonsri, T.; Lehn, J.-M. Chem.-
Eur. J. 2004, 10, 1711-1715.
(15) Maly, D. J.; Choong, I. C.; Ellman, J. A. Proc. Natl. Acad. Sci. U.S.A.
2000, 97, 2419-2424.
(16) Kehoe, J. W.; Maly, D. J.; Verdugo, D. E.; Armstrong, J. I.; Cook, B. N.;
Ouyang, Y.-B.; Moore, K. L.; Ellman, J. A.; Bertozzi, C. R. Bioorg. Med.
Chem. Lett. 2002, 12, 329-332.
(17) Lewis, W. G.; Green, L. G.; Grynszpan, F.; Radic´, Z.; Carlier, P. R.; Taylor,
P.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 1053-
1057.
† Department of Chemistry, The Scripps Research Institute.
§ The Skaggs Institute for Chemical Biology, The Scripps Research
Institute.
(18) Bourne, Y.; Kolb, H. C.; Radic´, Z.; Sharpless, K. B.; Taylor, P.; Marchot,
P. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 1449-1454.
(19) Inglese, J.; Benkovic, S. J. Tetrahedron 1991, 47, 2351-2364.
(20) Boger, D. L.; Haynes, N.-E.; Kitos, P. A.; Warren, M. S.; Ramcharan, J.;
Marolewski, A. E.; Benkovic, S. J. Bioorg. Med. Chem. 1997, 5, 1817-
1830.
(21) Greasley, S. E.; Marsilje, T. H.; Cai, H.; Baker, S.; Benkovic, S. J.; Boger,
D. L.; Wilson, I. A. Biochemistry 2001, 40, 13538-13547.
(22) Nguyen, R.; Huc, I. Angew. Chem., Int. Ed. 2001, 40, 1774-1776.
(23) Nicolaou, K. C.; Hughes, R.; Cho, S. Y.; Winssinger, N.; Smethurst, C.;
Labischinski, H.; Endermann, R. Angew. Chem., Int. Ed. 2000, 39, 3823-
3828.
‡ University of California, San Diego.
(1) Jain, A.; Huang, S. G.; Whitesides, G. M. J. Am. Chem. Soc. 1994, 116,
5057-5062.
(2) Mammen, M.; Chio, S.-K.; Whitesides, G. M. Angew. Chem., Int. Ed. 1998,
37, 2755-2794.
(3) Rideout, D. Science 1986, 233, 561-563.
(4) Rideout, D.; Calogeropoulou, T.; Jaworski, J.; McCarthy, M. Biopolymers
1990, 29, 247-262.
(5) Huc, I.; Lehn, J.-M. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 2106-2110.
9
6686
J. AM. CHEM. SOC. 2005, 127, 6686-6692
10.1021/ja043031t CCC: $30.25 © 2005 American Chemical Society