M. Harmata, X. Hong / Tetrahedron Letters 46 (2005) 3847–3849
3849
Ono, H.; Kamat, V. P.; Hoshi, T.; Suzuki, T.; Ando, M. J.
Chem. Soc., Perkin Trans. 1 2002, 7, 895; (d) Lecornue, F.;
Ollivier, J. Synlett 2004, 1613; (e) Sabui, S. K.; Venka-
teswaran, R. V.; Vyvyan, J. R.; Loitz, C.; Looper, R. E.;
Mattingly, C. S.; Peterson, E. A.; Staben, S. T. J. Org.
Chem. 2004, 69, 2461; (f) Sabui, S. K.; Venkateswaran, R.
V. Tetrahedron Lett. 2004, 45, 2047; (g) Sabui, S. K.;
Venkateswaran, R. V. Tetrahedron Lett. 2004, 45, 983,
Pseudopterosins: (h) Harrowven, D. C.; Tyte, M. J.
Tetrahedron Lett. 2004, 45, 2089; (i) Kocienski, P. J.;
Pontiroli, A.; Qun, L. J. Chem. Soc., Perkin Trans. 1 2001,
2356; (j) Chow, R.; Kocienski, P. J.; Kuhl, A.; LeBrazidec,
J.-Y.; Muir, K.; Fish, P. J. Chem. Soc., Perkin Trans. 1
2001, 2344; (k) Harrowven, D. C.; Wilden, J. D.; Tyte, M.
J.; Hursthouse, M. B.; Coles, S. J. Tetrahedron Lett. 2001,
42, 1193; (l) Corey, E. J.; Lazerwith, S. E. J. Am. Chem.
Soc. 1998, 120, 2777; (m) Dehmel, F.; Schmalz, H.-G. Org.
Lett. 2001, 3, 3579; (n) Horstermann, D.; Schmalz, H.-G.;
Kociok-Kohn, G. Tetrahedron 1999, 55, 6905; (o) David-
son, J. P.; Corey, E. J. J. Am. Chem. Soc. 2003, 125, 13486;
(p) Johnson, T. W.; Corey, E. J. J. Am. Chem. Soc. 2001,
123, 4475, Ileabethin: (q) Rodriguez, A.; Rodriguez, I.
Tetrahedron Lett. 2002, 43, 5601.
´
3. (a) Rodrıguez, A. D.; Ramırez, C.; Rodrıguez, I. I.;
Gonzalez, E. Org. Lett. 1999, 1, 527–530; (b) Tuberculosis:
´
´
´
Current Concepts and Treatment; Friedman, L. N., Ed.;
CRC: Boca Raton, FL, 2001; (c) Mayer, A. M. S.;
Jacobson, P. B.; Fenical, W.; Jacobs, R. S.; Glaser, K. B.
Life Sci. 1998, 62, 401; (d) Mitscher, L. A.; Baker, W.
Med. Res. Rev. 1998, 18, 363; (e) Rucker, G.; Breitmaier,
E.; Manns, D.; Maier, W.; Marek, A.; Heinzmann, B.;
Heiden, K.; Seggewies, S. Arch. Pharm. 1997, 330, 12; (f)
Ohno, M.; Todoriki, R.; Yamamoto, Y.; Akita, H. Chem.
Pharm. Bull. 1994, 42, 1590; (g) Asaoka, M.; Shima, K.;
Fujii, N.; Takei, H. Tetrahedron 1988, 44, 4757; (h)
Fusetani, N.; Sugano, M.; Matsunaga, S.; Hashimoto, K.
Experientia 1987, 43, 1234; (i) Wright, A. E.; Pomponi, S.
A.; McConnell, O. J.; Kohmoto, S.; McCarthy, P. J. J.
Nat. Prod. 1987, 50, 976; (j) McEnroe, F. J.; Fenical, W.
Tetrahedron 1978, 34, 1661; (k) Bohlmann, F.; Lonitz, M.
Chem. Ber. 1978, 111, 843.
Scheme 5.
process proceeds in a 27% overall yield from the com-
mercially available benzaldehyde 10. HoveydaÕs route
required six steps from commercially available starting
materials and proceeded in an overall yield of 48%. This
means that both routes had essentially the same average
yield per step, but functional group manipulations
inherently required in our approach increase the number
of steps. Thus, it would behoove us to examine methods
to develop productive sulfoximine excision chemistry.
Future studies will include an independent approach
to erogorgiaene as well as the synthesis of pseudopterox-
azole and related compounds.13
4. Rodriguez, A. D.; Ramirez, C. J. Nat. Prod. 2001, 64, 100.
5. (a) Cesati, R. R.; de Armas, J.; Hoveyda, A. H. J. Am.
Chem. Soc. 2004, 126, 96; (b) Davies, H. M. L.; Walji, A.
M. Angew. Chem., Int. Ed. 2005, 117, 1761.
6. (a) Harmata, M.; Pavri, N. Angew. Chem., Int. Ed. 1999,
38, 2419; (b) Bolm, C.; Hildebrand, J. P. Tetrahedron Lett.
1998, 39, 5731.
Acknowledgments
7. Harmata, M.; Hong, X. Org. Lett. 2004, 6, 2201.
8. Harmata, M.; Kahraman, M. Synthesis 1994, 142.
9. Cary, J. M.; Moore, J. S. Org. Lett. 2002, 4, 4663.
10. Moore, J. S.; Weinstein, E. J.; Wu, Z. Tetrahedron Lett.
1991, 32, 2465.
This work was supported by the NIH (1R01-AI59000-
01A1) and the Petroleum Research Fund, sponsored
by the American Chemical Society (38288-AC1), to
whom we are grateful. We thank FMC Lithium for a
gift of various alkyllithium reagents. We thank Mr.
Nathan L. Calkins for his assistance.
11. Koradin, C.; Dohle, W.; Rodriguez, A. L.; Schmid, B.;
Knochel, P. Tetrahedron 2003, 59, 1571.
1
12. Data for 6: colorless oil; H NMR (250 MHz, CDCl3): d
7.29–7.27 (m, 1H), 7.10–7.09 (m, 2H), 5.80–5.67 (m, 1H),
5.04–4.94 (m, 2H), 3.36 (dq, J = 14.3, 6.9 Hz, 1H), 2.46–
2.38 (m, 1H), 2.27 (s, 3H), 2.29–2.23 (m, 1H), 1.23 (d,
J = 7.0 Hz, 3H), 0.25 (s, 9H); 13C NMR (62.5 MHz,
CDCl3): d 146.2, 137.2, 135.0, 133.0, 129.6, 125.5, 122.0,
115.8, 104.2, 97.7, 41.8, 36.2, 20.6, 20.0, 0.00(3);
References and notes
1. (a) Paras, N. A.; Macmillan, D. W. C. J. Am. Chem. Soc.
2002, 124, 7894; (b) Harmata, M.; Hong, X. J. Am. Chem.
Soc. 2003, 125, 5754.
2. For recent examples and references, see the following and
others cited therein (a) RajanBabu, T. V.; Zhang, A. Org.
Lett. 2004, 6, 3159; (b) Harmata, M.; Hong, X. Tetrahe-
dron Lett. 2003, 44, 7261; (c) Hagiwara, H.; Okabe, T.;
25
½aꢀD ꢁ60.6 (c 0.66, CHCl3). Reported rotation values for
25
16: ½aꢀD ꢁ60; Ref. 5.
1
13. All new compounds were characterized by H NMR, 13C
NMR and IR spectra as well as HRMS data.