Communication
doi.org/10.1002/ejoc.202001317
EurJOC
European Journal of Organic Chemistry
after reduction of the intermediate aldehyde with NaBH4. Benz-
ylation of the primary alcohol then yielded the desired aceton-
ide 10 in 97 %.
Keywords: Saponins · Anemoclemosides · Glycosylation ·
Hederagenin glycosides · Cyclic acetal glycosidic linkage
The remaining synthesis steps proceeded smoothly. Hydroly-
sis of the isopropylidene acetal with dilute aqueous sulfuric acid
at 90 °C followed by selective TBDPS protection of the primary
[1] a) S. B. Mahato, S. Garai, Triterpenoid Saponins in Progress in the Chemistry
of Natural Organic Products, (Eds.: W. Herz, G. W. Kirby, R. E. Moore, W.
Steglich, C. Tamm), Springer-Verlag, Wien 1998, pp. 1–196; b) M. A. La-
caille-Dubois, Biologically and Pharmacologically Active Saponins from
Plants: Recent Advances in Saponins in Food, Feedstuffs and Medicinal
Plants, (Eds.: W. Oleszek, A. Marston), Springer Dordrecht, 2000, pp. 205–
218; c) J.-P. Vincken, L. Heng, A. de Groot, H. Gruppen, Phytochemistry
2007, 68, 275–297.
[2] D. Sobolewska, A. Galanty, K. Grabowska, J. Makowska-Wąs, D. Wróbel-
Biedrawa, I. Podolak, Phytochem. Rev. 2020, 19, 139–189.
[3] O. Anderson, J. Beckett, C. C. Briggs, L. A. Natrass, C. F. Cranston, E. J.
Wilkinson, J. H. Owen, R. Mir Williams, A. Loukaidis, M. E. Bouillon, D.
Pritchard, M. Lahmann, M. S. Baird, P. W. Denny, RSC Med. Chem. 2020,
11, 833–842.
[4] E. Ramos-Morales, G. de la Fuente, R. J. Nash, R. Braganca, S. Duval, M. E.
Bouillon, M. Lahmann, C. J. Newbold, PLOS ONE 2017, 12, e0184517.
[5] a) M. Lahmann, H. Gybäck, P. J. Garegg, S. Oscarson, R. Suhr, J. Thiem,
Carbohydr. Res. 2002, 337, 2153–2159; b) B. Yu, J. Sun, X. Yang, Acc. Chem.
Res. 2012, 45, 1227–1236; c) Y. Yang, S. Laval, B. Yu, Adv. Carbohydr. Chem.
Biochem. 2014, 71, 137–226.
[6] X.-C. Li, C.-R. Yang, Y.-Q. Liu, R. Kasai, K. Ohtani, K. Yamasaki, K. Miyahara,
K. Shingu, Phytochemistry 1995, 39, 1175–1179.
[7] P. Kayce, N. Böke Sarikahya, M. Pekmez, N. Arda, S. Kırmızıgül, Turk. J.
Chem. 2017, 41, 345–353.
[8] K. Hostettmann, Helv. Chim. Acta 1980, 63, 606–609.
[9] C. J. Newbold, Assessing Antiprotozoal Agents in In vitro screening of plant
resources for extra-nutritional attributes in ruminants: nuclear and related
methodologies (Eds.: P. E. Vercoe, H. P. S. Makkar, A. C. Schlink), Springer
Dordrecht, 2010, pp. 47–53.
[10] J. Sun, X. Han, B. Yu, Org. Lett. 2005, 7, 1935–1938.
[11] E. Ramos-Morales, G. de la Fuente, S. Duval, C. Wehrli, M. Bouillon, M.
Lahmann, D. Preskett, R. Braganca, C. J. Newbold, Front. Microbiol. 2017,
8, 399.
alcohol eventually gave the requisite
43 % yield over 8 steps. -Arabinol 11 was then coupled with
the -rhamnose donor 5 in the presence of TMS triflate as Lewis
L-arabinol acceptor 11 in
L
L
acid catalyst affording disaccharide 12 in a yield of 91 % as a
single diastereoisomer. Silyl ether 12 was subsequently trans-
formed into the required aldehyde 14 in two steps. First, the
TBDPS group was cleaved with TBAF in the presence of excess
acetic acid as buffer to prevent acetate migration followed by
oxidation of alcohol 13 with TEMPO/BAIB to yield the desired
aldehyde 14 in 74 % over two steps. The coupling of disacchar-
ide aldehyde 14 with BnHed was performed under the same
conditions as applied in the synthesis of Anemoclemoside A
affording the fully protected Anemoclemoside B precursor 15
in 94 % yield. A two-step deprotection sequence concluded the
synthesis of Anemoclemoside B. First, the acetate groups of
coupling product 15 were saponified with dilute aqueous
NaOH keeping the benzyl ester intact. The crude semi-depro-
tected saponin was then debenzylated over Pearlman catalyst
with excess hydrogen yielding the desired saponin in 91 %.
Spectroscopic data of the synthetic saponins matched the data
reported for the natural products by Yamasaki et al.[6]
In summary, the saponins Anemoclemoside A and B were
synthesised in overall yields of 46 % and 18 % over 6 and 18
steps, respectively. A mild and facile method was employed to
construct the characteristic cyclic acetal glycosidic linkage in
both saponins via the PTSA catalyzed condensation of benzyl
hederagenate with the respective saccharide side chains. 2.3 g
of Anemoclemoside A and 7.5 g of Anemoclemoside B were
produced in straight forward procedures demonstrating the
scalability of this approach.
[12] G. R. Eldridge, R. N. Buckle, M. Ellis, Z. Huang, J. E. Reilly, EP2712863 A1,
2014.
[13] A. M. P. van Steijn, J. P. Kamerling, J. F. G. Vliegenthart, Carbohydr. Res.
1991, 211, 261–277.
[14] O. Kölln, H. Redlich, Synthesis 1996, 826–832.
[15] a) K. M. K. Kutterer, G. Just, Heterocycles 1999, 51, 1409–1420; b) P. Herc-
zegh, I. Kovács, L. Szilágyi, F. Sztaricskai, A. Berecibar, C. Riche, A. Chiaroni,
A. Olesker, G. Lukacs, Tetrahedron 1994, 50, 13671–13686; c) F. L.
Van Delft, A. Rob, P. M. Valentijn, G. A. Van Der Marel,
J. H. Van Boom, J. Carbohydr. Chem. 1999, 18, 165–190.
[16] E. J. Corey, B. W. Erickson, J. Org. Chem. 1971, 36, 3553–3560.
Acknowledgments
The authors gratefully acknowledge the financial support by
the BEACON initiative, Innovate UK, Bangor University, and the
Erasmus+ program (M. Buri).
Received: September 30, 2020
Eur. J. Org. Chem. 2020, 7470–7473
7473
© 2020 Wiley-VCH GmbH