D
Y. Suganuma, Y. Kobayashi
Letter
Synlett
Funding Information
reaction 1
Br– Ph3P+
1
+
CO2H
This work was supported by JSPS KAKENHI Grant Number
JP15H05904.
J
a
p
a
n
S
o
c
i
etyforth
e
Pro
m
oti
o
n
of
S
c
i
e
n
c
e
(J
P
1
5
H
0
5
9
0
4)
(1 equiv)
22 (2 equiv)
NaHMDS (2 or 4.2 equiv)
THF, –90°C to 0 °C, 3 h
Supporting Information
Ph
CO2H
23
Supporting information for this article is available online at
S
u
p
p
orit
n
gInformati
o
n
S
u
p
p
orit
n
gInformati
o
n
NaHMDS
Yield [%]
Z/Ea
–
2 equiv
4.2 equiv
trace
77
89:11
References and Notes
a Ratio of peak heights in the 13C NMR.
(1) Nicolaou, K. C.; Härter, M. W.; Gunzner, J. L.; Nadin, A. Liebigs
Ann. 1997, 1283.
reaction 2
Br– Ph3P+
(2) For example: (a) Perlmutter, P.; Selajerern, W.; Vounatsos, F.
Org. Biomol. Chem. 2004, 2, 2220. (b) Han, X.; Crane, S. N.; Corey,
E. J. Org. Lett. 2000, 2, 3437. (c) Nicolaou, K. C.; Prasad, C. V. C.;
Ogilvie, W. W. J. Am. Chem. Soc. 1990, 112, 4988. (d) Delorme,
D.; Girard, Y.; Rokach, J. J. Org. Chem. 1989, 54, 3635.
NaHMDS (1 equiv)
reddish-orange
AcOH
(1 equiv)
+
color
THF, 0 °C, 1 h
24 (1 equiv)
1
(3) For example: (a) Baars, H.; Classen, M. J.; Aggarwal, V. K. Org.
Lett. 2017, 19, 6008. (b) Prévost, S.; Thai, K.; Schützenmeister,
N.; Coulthard, G.; Erb, W.; Aggarwal, V. K. Org. Lett. 2015, 17,
504. (c) Quan, L. G.; Cha, J. K. J. Am. Chem. Soc. 2002, 124, 12424.
(d) Boulton, L. T.; Brick, D.; Fox, M. E.; Jackson, M.; Lennon, I. C.;
McCague, R.; Parkin, N.; Rhodes, D.; Ruecroft, G. Org. Process Res.
Dev. 2002, 6, 138. (e) Grieco, P. A.; Reap, J. J. J. Org. Chem. 1973,
38, 3413.
Ph
25
Scheme 4 Experiments related to the reaction mechanism
with longer methylene chains than 2f or from the cyclopro-
pane 2216 was evident from the faint-yellow to creamy col-
or observed after the addition of NaHMDS, and by the re-
covery of unreacted aldehyde 1. These results are consistent
with the inaccessibility of E owing to the long chain or to
structural restrictions.
(4) For examples, see: (a) Srinivas, J.; Namito, Y.; Matsubara, R.;
Hayashi, M. J. Org. Chem. 2017, 82, 5146. (b) Ishigami, K.;
Kobayashi, M.; Takagi, M.; Shin-ya, K.; Watanabe, H. Tetrahedron
2015, 71, 8436. (c) Critcher, D. J.; Connolly, S.; Wills, M. J. Org.
Chem. 1997, 62, 6638. (d) Wang, S. S.; Shi, X.-X.; Powell, W. S.;
Tieman, T.; Feinmark, S. J.; Rokach, J. Tetrahedron Lett. 1995, 36,
513. (e) Just, G.; Wang, Z. Y. J. Org. Chem. 1986, 51, 4796.
(5) For examples, see: (a) Ortgies, S.; Rieger, R.; Rode, K.;
Koszinowski, K.; Kind, J.; Thiele, C. M.; Rehbein, J.; Breder, A. ACS
Catal. 2017, 7, 7578. (b) Hao, H.-D.; Trauner, D. J. Am. Chem. Soc.
2017, 139, 4117. (c) Liu, Y.-T.; Chen, J.-Q.; Li, L.-P.; Shao, X.-Y.;
Xie, J.-H.; Zhou, Q.-L. Org. Lett. 2017, 19, 3231. (d) Paull, D. H.;
Fang, C.; Donald, J. R.; Pansick, A. D.; Martin, S. F. J. Am. Chem.
Soc. 2012, 134, 11128. (e) Poth, D.; Wollenberg, K. C.; Vences,
M.; Schulz, S. Angew. Chem. Int. Ed. 2012, 51, 2187; Angew.
Chem. 2012, 124, 2229. (f) Wube, A. A.; Hüfner, A.; Thomaschitz,
C.; Blunder, M.; Kollroser, M.; Bauer, R.; Bucar, F. Bioorg. Med.
Chem. 2011, 19, 567. (g) Seike, H.; Ghosh, I.; Kishi, Y. Org. Lett.
2006, 8, 3865. (h) Mascitti, V.; Corey, E. J. J. Am. Chem. Soc. 2006,
128, 3118.
–
RCHO (F)
Na+
Br– Ph3P+
C
C=O
C
D
O
H
H
+ NaBr
E
O
C
C=O
OH
H
C
H
C
H
OH
R
C
R
Ph3P
C
O
H
H
G
Scheme 5 Plausible mechanism for the formation of carboxyl ylides D
(6) Maryanoff, B. E.; Reitz, A. B.; Duhl-Emswiler, B. A. J. Am. Chem.
Soc. 1985, 107, 217.
In summary, carboxy ylides D (acid ylides) can be
formed from carboxy phosphonium salts A and one equiva-
lent of NaHMDS in THF (Scheme 1); these ylides can be
used in Wittig reactions to produce Z-alkenoic acids stereo-
selectively.17 The results obtained with various carboxy
ylides suggest that intramolecular hydrogen exchange via E
is responsible for the formation of carboxy ylides D
(Scheme 4).
(7) For pKa values in DMSO of phosphonium salts (14–23), see:
(a) Ling-Chung, S.; Sales, K. D.; Utley, J. H. P. J. Chem. Soc., Chem.
Commun. 1990, 662. (b) Zhang, X.-M.; Bordwell, F. G. J. Am.
Chem. Soc. 1994, 116, 968. For carboxylic acids (pKa= 12–13)
see: (c) Bordwell, F. G.; Algrim, D. J. Org. Chem. 1976, 41, 2507.
For HN(TMS)2 (pKa= 26), see: (d) Grimm, D. T.; Bartmess, J. E.
J. Am. Chem. Soc. 1992, 114, 1227. For HN(TMS)2 in THF
(pKa= 25.8), see: (e) Fraser, R. R.; Mansour, T. S.; Savard, S. J. Org.
Chem. 1985, 50, 3232. For t-BuOH (pKa= 32) and ROH (R = Me,
Et) (pKa= 29–30), see; (f) Olmstead, W. N.; Margolin, Z.;
Bordwell, F. G. J. Org. Chem. 1980, 45, 3295. For DBU·H+
(pKa= 14), see: (g) Hulla, M.; Chamam, S. M. A.; Laurenczy, G.;
© Georg Thieme Verlag Stuttgart · New York — Synlett 2019, 30, A–E