Page 5 of 7
Journal of the American Chemical Society
Chem. Int. Ed. 2014, 53, 10330; (d) Zhu, R.-Y.; He, J.; Wang, X.-C.; Yu,
S. Palladium(II)-Catalyzed Alkene Functionalization via Nucleopallada-
tion: Stereochemical Pathways and Enantioselective Catalytic Applica-
tions. Chem. Rev. 2011, 111, 2981. (c) Gurak, J. A.; Yang, K. S.; Liu, Z.;
Engle, K. M. Directed, Regiocontrolled Hydroamination of Unactivated Al-
kenes via Protodepalladation. J. Am. Chem. Soc. 2016, 138, 5805; (d) Liu,
Z.; Zeng, T.; Yang, K. S.; Engle, K. M. β,γ-Vicinal Dicarbofunctionaliza-
tion of Alkenyl Carbonyl Compounds via Directed Nucleopalladation. J.
Am. Chem. Soc. 2016, 138, 15122; (e) O’Duill, M. L.; Matsuura, R.; Wang,
Y.; Turnbull, J. L.; Gurak, J. A.; Gao, D.-W.; Lu, G.; Liu, P.; Engle, K. M.
Tridentate Directing Groups Stabilize 6-Membered Palladacycles in Cata-
lytic Alkene Hydrofunctionalization. J. Am. Chem. Soc. 2017, 139, 15576;
(f) Wang, H.; Bai, Z.; Jiao, T.; Deng, Z.; Tong, H.; He, G.; Peng, Q.; Chen,
G. Palladium-Catalyzed Amide-Directed Enantioselective Hydrocarbo-
functionalization of Unactivated Alkenes Using a Chiral Monodentate Ox-
azoline Ligand. J. Am. Chem. Soc. 2018, 140, 3542; (g) Shen, H.-C.; Zhang,
L.; Chen, S.-S.; Feng, J.; Zhang, B.-W.; Zhang, Y.; Zhang, X.; Wu, Y.-D.;
Gong, L.-Z. Enantioselective Addition of Cyclic Ketones to Unactivated
Alkenes Enabled by Amine/Pd(II) Cooperative Catalysis. ACS Catal. 2019,
9, 791.
(17) (a) Beletskaya, I. P.; Cheprakov, A. V. The Heck Reaction as a
Sharpening Stone of Palladium Catalysis. Chem. Rev. 2000, 100, 3009; (b)
Wang, C.; Xiao, G.; Guo, T.; Ding, Y.; Wu, X.; Loh, T.-P. Palladium-Cat-
alyzed Regiocontrollable Reductive Heck Reaction of Unactivated Ali-
phatic Alkenes. J. Am. Chem. Soc. 2018, 140, 9332; (c) Gurak, J. A.; Engle,
K. M. Practical Intermolecular Hydroarylation of Diverse Alkenes via Re-
ductive Heck Coupling. ACS Catal. 2018, 8, 8987.
(18) Lapointe, D.; Fagnou, K. Overview of the Mechanistic Work on the
Concerted Metallation–Deprotonation Pathway. Chem. Lett. 2010, 39,
1118.
J.-Q. Ligand-Promoted Alkylation of C(sp3)–H and C(sp2)–H Bonds. J. Am.
Chem. Soc. 2014, 136, 13194; (e) Wang, C.; Zhang, L.; Chen, C.; Han, J.;
Yao, Y.; Zhao, Y. Oxalyl Amide Assisted Palladium-Catalyzed Synthesis
of Pyrrolidones via Carbonylation of γ-C(sp3)–H Bonds of Aliphatic Amine
Substrates. Chem. Sci. 2015, 6, 4610; (f) Kong, W.-J.; Liu, Y.-J.; Xu, H.;
Chen, Y.-Q.; Dai, H.-X.; Yu, J.-Q. Pd-Catalyzed α-Selective C–H Func-
tionalization of Olefins: En Route to 4-Imino-β-Lactams. J. Am. Chem. Soc.
2016, 138, 2146; (g) Hu, T.-J.; Zhang, G.; Chen, Y.-H.; Feng, C.-G.; Lin,
G.-Q. Borylation of Olefin C–H Bond via Aryl to Vinyl Palladium 1,4-Mi-
gration. J. Am. Chem. Soc. 2016, 138, 2897; (h) Zang, Z.-L.; Zhao, S.; Kar-
nakanti, S.; Liu, C.-L.; Shao, P.-L.; He, Y. Catalytic Multisite-Selective
Acetoxylation Reactions at sp2 vs sp3 C–H Bonds in Cyclic Olefins. Org.
Lett. 2016, 18, 5014; (i) Liang, Q.-J.; Yang, C.; Meng, F.-F.; Jiang, B.; Xu,
Y.-H.; Loh, T.-P. Chelation versus Non-Chelation Control in the Stereose-
lective Alkenyl sp2 C−H Bond Functionalization Reaction. Angew. Chem.
Int. Ed. 2017, 56, 5091; (j) Viart, H. M.-F.; Bachmann, A.; Kayitare, W.;
Sarpong, R. β-Carboline Amides as Intrinsic Directing Groups for C(sp2)–
H Functionalization. J. Am. Chem. Soc. 2017, 139, 1325; (k) Parella, R.;
Babu, S. A. Pd(II)-Catalyzed, Picolinamide-Assisted, Z -Selective γ-Aryla-
tion of Allylamines To Construct Z -Cinnamylamines. J. Org. Chem. 2017,
82, 6550; (l) Luo, Y.-C.; Yang, C.; Qiu, S.-Q.; Liang, Q.-J.; Xu, Y.-H.; Loh,
T.-P. Palladium(II)-Catalyzed Stereospecific Alkenyl C–H Bond Alkyla-
tion of Allylamines with Alkyl Iodides. ACS Catal. 2019, 4271.
(6) Hoyle, J. Some Synthetic Uses of Halides. In Supplement D2; The
Chemistry of Halides, Pseudo-Halides and Azides; John Wiley & Sons, Ltd,
2004; pp 709–785.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(7) Metal-Catalyzed Cross-Coupling Reactions, ed. A. de Meijere and F.
Diederich, Wiley-VCH, Weinheim, 2004.
(8) Science of Synthesis, 32.4.2 Product Subclass 2: Chloro-, Bromo-,
and Iodoalkenes, Pollex, A., 2008, 32, 462.
(19) Haines, B. E.; Xu, H.; Verma, P.; Wang, X.-C.; Yu, J.-Q.; Musaev,
D. G. Mechanistic Details of Pd(II)-Catalyzed C–H Iodination with Molec-
ular I2: Oxidative Addition vs Electrophilic Cleavage. J. Am. Chem. Soc.
2015, 137, 9022.
(20) (a) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. Highly Regioselec-
tive Arylation of sp3 C−H Bonds Catalyzed by Palladium Acetate. J. Am.
Chem. Soc. 2005, 127, 13154; (b) Daugulis, O.; Roane, J.; Tran, L. D. Bi-
dentate, Monoanionic Auxiliary-Directed Functionalization of Carbon–Hy-
drogen Bonds. Acc. Chem. Res. 2015, 48, 1053.
(21) For selected examples of the picolinamide directing group in synthe-
sis, see: (a) Zhang, S.-Y.; He, G.; Nack, W. A.; Zhao, Y.; Li, Q.; Chen, G.
Palladium-Catalyzed Picolinamide-Directed Alkylation of Unactivated
C(sp3)–H Bonds with Alkyl Iodides. J. Am. Chem. Soc. 2013, 135, 2124;
(b) O’ Donovan, D. H.; Aillard, P.; Berger, M.; de la Torre, A.; Petkova,
D.; Knittl‐Frank, C.; Geerdink, D.; Kaiser, M.; Maulide, N. C−H Activation
Enables a Concise Total Synthesis of Quinine and Analogues with En-
hanced Antimalarial Activity. Angew. Chem. Int. Ed. 2018, 57, 10737; (c)
Zhan, B.-B.; Li, Y.; Xu, J.-W.; Nie, X.-L.; Fan, J.; Jin, L.; Shi, B.-F. Site-
Selective δ-C(sp3)−H Alkylation of Amino Acids and Peptides with Malei-
mides via a Six-Membered Palladacycle. Angew. Chem. Int. Ed. 2018, 57,
5858; (d) Guin, S.; Dolui, P.; Zhang, X.; Paul, S.; Singh, V. K.; Pradhan,
S.; Chandrashekar, H. B.; Anjana, S. S.; Paton, R. S.; Maiti, D. Iterative
Arylation of Amino Acids and Aliphatic Amines via δ-C(sp3)−H Activa-
tion: Experimental and Computational Exploration. Angew. Chem. Int. Ed.
2019, 58, 5633.
(22) Chen, F.-J.; Zhao, S.; Hu, F.; Chen, K.; Zhang, Q.; Zhang, S.-Q.;
Shi, B.-F. Pd(II)-Catalyzed Alkoxylation of Unactivated C(sp3)–H and
C(sp2)–H Bonds Using a Removable Directing Group: Efficient Synthesis
of Alkyl Ethers. Chem. Sci. 2013, 4, 4187.
(23) (a) Barton, D. H. R.; O’Brien, R. E.; Sternhell, S. A New Reaction
of Hydrazones. J. Chem. Soc. 1962, 470; (b) Pross, A.; Sternhell, S. Oxida-
tion of Hydrazones with Iodine in the Presence of Base. Aust. J. Chem.
1970, 23, 989;
(24) Jiang, L.; Job, G. E.; Klapars, A.; Buchwald, S. L. Copper-Catalyzed
Coupling of Amides and Carbamates with Vinyl Halides. Org. Lett. 2003,
5, 3667.
(25) Simmons, E. M.; Hartwig, J. F. On the Interpretation of Deuterium
Kinetic Isotope Effects in C−H Bond Functionalizations by Transition-
Metal Complexes. Angew. Chem. Int. Ed. 2012, 51, 3066.
(9) Petrone, D. A.; Ye, J.; Lautens, M. Modern Transition-Metal-Cata-
lyzed Carbon–Halogen Bond Formation. Chem. Rev. 2016, 116, 8003.
(10) Johnson, C. R.; Adams, J. P.; Braun, M. P.; Senanayake, C. B. W.;
Wovkulich, P. M.; Uskoković, M. R. Direct α-Iodination of Cycloal-
kenones. Tetrahedron Letters 1992, 33, 917.
(11) (a) Kuhl, N.; Schröder, N.; Glorius, F. Rh(III)-Catalyzed Halogena-
tion of Vinylic C–H Bonds: Rapid and General Access to Z-Halo Acryla-
mides. Org. Lett. 2013, 15, 3860; (b) Yu, D.-G.; Gensch, T.; de Azambuja,
F.; Vásquez-Céspedes, S.; Glorius, F. Co(III)-Catalyzed C–H Activa-
tion/Formal SN-Type Reactions: Selective and Efficient Cyanation, Halo-
genation, and Allylation. J. Am. Chem. Soc. 2014, 136, 17722.
(12) Negishi, E.; Takahashi, T. The Origin of the Configurational Insta-
bility of 1-Silyl-1-Alkenyllithiums and Related Alkenylmetals. J. Am.
Chem. Soc. 1986, 108, 3402.
(13) Wang, Y.; Liu, J.; Huang, L.; Zhu, R.; Huang, X.; Moir, R.; Huang,
J. KOtBu-Catalyzed Lithiation of PMDTA and the Direct Functionalization
of Bridged Alkenes under Mild Conditions. Chem. Commun. 2017, 53,
4589.
(14) For selected examples of Pd-catalyzed C–H iodinations see: (a) An-
drienko, O. S.; Goncharov, V. S.; Raida, V. S. Catalytic Iodination of
Aromic Compounds via ortho-Palladated Complexes. Russ. J. Org. Chem.
1996, 32, 79; (b) Dick, A. R.; Hull, K. L.; Sanford, M. S. A Highly Selective
Catalytic Method for the Oxidative Functionalization of C−H Bonds. J. Am.
Chem. Soc. 2004, 126, 2300; (c) Giri, R.; Chen, X.; Yu, J.-Q. Palladium-
Catalyzed Asymmetric Iodination of Unactivated C–H Bonds under Mild
Conditions. Angew. Chem. Int. Ed. 2005, 44, 2112; (d) Kalyani, D.; Dick,
A. R.; Anani, W. Q.; Sanford, M. S. A Simple Catalytic Method for the
Regioselective Halogenation of Arenes. Org. Lett. 2006, 8, 2523; (e) Wang,
X.-C.; Hu, Y.; Bonacorsi, S.; Hong, Y.; Burrell, R.; Yu, J.-Q. Pd(II)-
Catalyzed C–H Iodination Using Molecular I2 as the Sole Oxidant. J. Am.
Chem. Soc. 2013, 135, 10326; (f) Chu, L.; Xiao, K.-J.; Yu, J.-Q. Room-
Temperature Enantioselective C–H Iodination via Kinetic Resolution. Sci-
ence 2014, 346, 451; (g) Lu, C.; Zhang, S.-Y.; He, G.; Nack, W. A.; Chen,
G. Palladium-Catalyzed Picolinamide-Directed Halogenation of Ortho C–
H Bonds of Benzylamine Substrates. Tetrahedron 2014, 70, 4197; (h) Zhu,
R.-Y.; Liu, L.-Y.; Yu, J.-Q. Highly Versatile β-C(sp3)–H Iodination of Ke-
tones Using a Practical Auxiliary. J. Am. Chem. Soc. 2017, 139, 12394.
(15) For a recent review see: Liron, F.; Oble, J.; Lorion, M. M.; Poli, G.
Direct Allylic Functionalization Through Pd-Catalyzed C–H Activation.
Eur. J. Org. Chem. 2014, 2014, 5863.
(26) (a) Sun, H.-Y.; Gorelsky, S. I.; Stuart, D. R.; Campeau, L.-C.;
Fagnou, K. Mechanistic Analysis of Azine N-Oxide Direct Arylation: Evi-
dence for a Critical Role of Acetate in the Pd(OAc)2 Precatalyst. J. Org.
Chem. 2010, 75, 8180; (b) Liu, L.-Y.; Yeung, K.-S.; Yu, J.-Q. Ligand-Pro-
moted Non-Directed C−H Cyanation of Arenes, Chem. Eur. J. 2019, 25,
2199.
(16) For selected examples see: (a) Keith, J. A.; Henry, P. M. The Mech-
anism of the Wacker Reaction: A Tale of Two Hydroxypalladations. An-
gew. Chem. Int. Ed. 2009, 48, 9038; (b) McDonald, R. I.; Liu, G.; Stahl, S.
ACS Paragon Plus Environment