C O M M U N I C A T I O N S
Scheme 3 a
carbamate (80%) with complete stereocontrol, even with the further-
removed homologated hydroxyl directing group in 23 (cf. 15).
Subsequent IBX oxidation afforded the tricyclic guanidine hemi-
aminal 24 (98%), which underwent sequential benzyl ester hydro-
genolysis (99%) and cis-selective Wittig olefination17 with the ylide
derived from nonyltriphenylphosphonium bromide to form 25
(72%). Introduction of the guanidine-containing side chain of
batzelladine D (2) was then effected by carboxylate O-alkylation
with (BocHN)2CdN(CH2)4OSO2Me18 to form 26 in 93% yield.
Closure of the remaining ring was accomplished via intramolecular
regio- and stereoselective iodoamination (70%) of the alkene in
26, relying on minimization of A1,3-like strain between C11 and
C18 of the reacting cis-alkene hydrocarbon chain to establish the
desired C13 configuration.12 Subsequent reductive deiodination19
provided 27 (89%), whose protective groups were removed with
TFA to provide (-)-2 (82%) as its bis(trifluoroacetate) salt.
A diastereoselective [4+2] annulation of vinyl carbodiimides
with chiral N-alkyl imines has been developed to access the
stereochemically rich tricyclic core of the batzelladine alkaloids.
Its application to the asymmetric synthesis of batzelladine D (2)
permitted the use of long-range, directed hydrogenation and
stereoselective intramolecular iodoamination as additional key steps
to establish the remaining stereocenters within 2 with excellent
stereocontrol. Efforts are underway to apply this novel approach
to other members of the batzelladine alkaloids.
a Reagents and conditions: (a) TBAF, THF, 97%; (b) [Ir(cod)pyr(PCy3)]-
PF6, H2 (400 psi), CH2Cl2, 81%.
Scheme 4 a
Acknowledgment. This research was supported by the NIH
(GM67659), Merck, and Pfizer, Inc.
Supporting Information Available: Complete ref 1a, and experi-
mental procedures. This material is available free of charge via the
References
(1) (a) Patil, A. D. et al. J. Org. Chem. 1995, 60, 1182-1188. (b) Patil, A.
D.; Freyer, A. J.; Taylor, P. B.; Carte, B.; Zuber, G.; Johnson, R. K.;
Faulkner, D. J. J. Org. Chem. 1997, 62, 1814-1819.
(2) Rao, A. V. R.; Gurjar, M. K.; Vasudevan, J. J. Chem. Soc., Chem.
Commun. 1995, 1369-1370.
(3) Louwrier, S.; Ostendorf, M.; Tuynman, A.; Hiemstra, H. Tetrahedron Lett.
1996, 37, 905-908.
(4) Elliott, M. C.; Long, M. S. Org. Biomol. Chem. 2004, 2, 2003-2011.
(5) Evans, P. A.; Manangan, T. Tetrahedron Lett. 2001, 42, 6637-6640.
(6) (a) Snider, B. B.; Chen, J. Tetrahedron Lett. 1996, 37, 6977-6980. (b)
Snider, B. B.; Chen, J. Tetrahedron Lett. 1998, 39, 5697-5700. (c) Black,
G. P.; Murphy, P. J.; Walshe, N. D. A. Tetrahedron 1998, 54, 9481-
9488.
a Reagents and conditions: (a) (MeHN)2CNMe2N3, CHCl3, 84% (2:1
E:Z); (b) PPh3, CH2Cl2, 75% (E), 58% (Z); (c) p-MeOC6H4CH2NCO, PhMe,
85 °C, 73% (E), 67% (Z); (d) Cp2ZrHCl, THF, -20 °C, 66%; (e) (ClCH2)2,
23 °C, 86% from (E)-19, 88% from (Z)-19; (f) TBAF, THF, 99%; (g)
[Ir(cod)pyr(PCy3)]PF6, H2 (400 psi), CH2Cl2, 80%; (h) IBX, DMSO,
CH3CN, 98%; (i) 10% Pd(OH)2/C, AcOH, H2 (1 atm), MeOH, 99%; (j)
Me(CH2)8PPh3, THF, 50 °C, 72%; (k) (BocHN)2CdN(CH2)4OMs, Cs2CO3,
DMF, 40 °C, 93%; (l) I2, K2CO3, DME, 70%; (m) 10% Pd/C, Et3N, H2 (1
atm), EtOAc, 89%; (n) TFA, 82%.
(7) (a) Franklin, A. S.; Ly, S. K.; Mackin, G. H.; Overman, L. E.; Shaka, A.
J. J. Org. Chem. 1999, 64, 1512-1519. (b) Cohen, F.; Overman, L. E.;
Sakata, S. K. L. Org. Lett. 1999, 1, 2169-2172. (c) Cohen, F.; Overman,
L. E. J. Am. Chem. Soc. 2001, 123, 10782-10783.
(8) (a) Nagasawa, K.; Koshino, H.; Nakata, T. Tetrahedron Lett. 2001, 42,
4155-4158. (b) Ishiwata, T.; Hino, T.; Koshino, H.; Hashimoto, Y.;
Nakata, T.; Nagasawa, K. Org. Lett. 2002, 4, 2921-2924. (c) Shimokawa,
J.; Shirai, K.; Tanatani, A.; Hashimoto, Y.; Nagasawa, K. Angew. Chem.,
Int. Ed. 2004, 43, 1559-1562.
(9) (a) Wamhoff, H.; Richardt, G.; Sto¨lben, S. AdV. Heterocycl. Chem. 1995,
64, 159-249. (b) Wamhoff, H.; Schmidt, A. Heterocycles 1993, 35,
1055-1066. (c) Saito, T.; Ohkubo, T.; Kuboki, H.; Maeda, M.; Tsuda,
K.; Karakasa, T.; Satsumabayashi, S. J. Chem. Soc., Perkin Trans. 1 1998,
3065-3080.
(10) Palacios, F.; Peres de Heredia, I.; Rubiales, G. J. Org. Chem. 1995, 60,
2384-2390.
15 was subjected to long-range, hydroxy-directed hydrogenation
with Crabtree’s catalyst13,14 to provide the â-guanidino ester 16 as
a single stereoisomer (81%), whose structure was verified through
X-ray analysis.
Having secured the feasibility and favorable stereochemical
consequences of the heteroannulation, the strategy was validated
in a short asymmetric synthesis of batzelladine D (2, Scheme 4).
1,4-But-2-ynoic acid benzyl ester (17) was treated with tetrameth-
ylguanidinium azide to afford the â-azido acrylate 18 (84%; 2:1
E:Z). Both the E and Z isomers of 18 separately underwent
Staudinger-aza-Witting condensation with p-methoxybenzyl iso-
cyanate to form the vinyl carbodiimides (E)-19 and (Z)-19 with
comparable efficiency. Treatment of either (E)- or (Z)-19 with 2-(2-
O-TBDPS-ethyl)-3,4-dihydro-2H-pyrrole (21), derived from
Cp2ZrHCl-mediated reduction15 of its lactam precursor 20,16
provided the bicyclic dihydropyrimidine 22 with complete diaste-
reoselectivity (86 and 88%, respectively). Removal of the TBDPS
ether in 22 allowed for directed hydrogenation of its vinylogous
(11) Woo, K.; Jones, K. Tetrahedron Lett. 1991, 32, 6949-6952.
(12) Carbon numbering assignments conform to that of batzelladine D.
(13) (a) Crabtree, R. H.; Davis, M. W. Organometallics 1983, 2, 681-682.
(b) Stork, G.; Kahne, D. E. J. Am. Chem. Soc. 1983, 105, 1072-1073.
(14) Hydrogenation of 9 (Rh/Al2O3) led to 2:1 dr favoring the undesired C7/
C15 configurations, in addition to concomitant reduction of the PMB
group.
(15) Schedler, D. J. A.; Li, J.; Ganem, B. J. Org. Chem. 1996, 61, 4115-
4119.
(16) Browning, R. G.; Badarinarayana, V.; Mahmud, H.; Lovely, C. J.
Tetrahedron 2004, 60, 359-365.
(17) Wang, Q.; Wei, H.; Schlosser, M. Eur. J. Org. Chem. 1999, 3263-3268.
(18) Neubert, B. J.; Snider, B. B. Org. Lett. 2003, 5, 765-768.
(19) Li, N. S.; Piccirilli, J. A. J. Org. Chem. 2004, 69, 4751-4759.
JA0519029
9
J. AM. CHEM. SOC. VOL. 127, NO. 19, 2005 6925