condensation) or their equivalents.1,8a-f However, a major
drawback in this method is the lack of regioselectivity leading
to formation of isomeric products with unsymmetrically
substituted reactants.4c,8f,9b Among the various regioselective
routes to quinoxaline and derivatives,1,8-10 the method
involving nucleophilic substitution on o-nitrohalobenzene by
appropriately functionalized aliphatic amine followed by
reductive cyclization of the resulting o-nitroaminobenzene
derivatives has been most widely employed.3 The other most
promising route in terms of regiochemistry and generality
is the intramolecular cyclization of R-aryliminophenylhy-
drazone11 or oxime derivatives12-14 of R-dicarbonyl com-
pounds employing readily available substituted aniline
precursors instead of 1,2-diaminobenzene or o-halonitroben-
zene derivatives.14 However, these potentially useful methods
have not been thoroughly explored, and the existing few
examples are rather limited in scope and suffer from several
practical disadvantages such as extremely vigorous conditions
or low yields.11 During the course of our ongoing exploration
on synthetic applications of polarized ketene S,S- and N,S-
acetals as versatile building blocks for heterocycle synthe-
sis,15,16 we have now developed a novel, highly regioselective
and efficient route to 2,3-substituted quinoxalines through
N-heteroannulation of R-nitroketene N,S-anilinoacetals. The
results of these studies are presented in this letter.
Scheme 1. Synthesis of Quinoxalinea
a Reagents and conditions: (a) DMF, POCl3, Cl2CHCHCl2, 80-
90 °C, 60%; (b) POCl3, CH3CN, 80 °C, 70%.
2-(methylthio)quinoxaline 3a (Scheme 1). Subsequently, it
was found that the reaction proceeded smoothly in the
absence of DMF and under optimized conditions, the
quinoxaline 3a was obtained in improved yield (70%) when
N,S-acetal 1a was reacted with POCl3 in acetonitrile at 80
°C. The reaction was extended to other substituted R-ni-
troketene N,S-acetals 1b-j with a view to examine scope
of the reaction for a general quinoxaline synthesis and the
results are presented in the Table 1. In general, the nitro-
Table 1. Synthesis of Quinoxalines 3 and 5 by
POCl3-Promoted Cyclocondensation of R-Nitroketene
N,S-Acetals
We have recently reported an efficient general route to
3-aroyl-2-(methylthio)quinolines through cyclocondensation
of various R-oxo N,S-arylacetals with Vilsmeier reagents.17
These studies motivated us to extend this method for the
synthesis of 3-nitroquinolines by reaction of the correspond-
ing nitroketene N,S-acetals with Vilsmeier reagent. However
when the N,S-acetal 1a was exposed to Vilsmeier reaction
conditions, the product (60%) isolated was not the expected
quinoline 2a but was characterized as 3-chloro-7-methoxy-
(8) (a) Antoniotti, S.; Dunach, E. Tetrahedron Lett. 2002, 43, 3971 and
references therein. (b) Petukhov, P. A.; Tkachev, A. V. Tetrahedron 1997,
53, 9761. (c) Juncai, F.; Yang, L.; Qinghua, M.; Bin. L. Synth. Commun.
1998, 28, 193. (d) Raw, S. A.; Wilfred, C. D.; Taylor, R. J. K. Chem.
Commun. 2003, 2286. (e) Kaupp, G.; Naimi-Jamal, M. R. Eur. J. Org.
Chem. 2002, 1368. (f) Chen, P.; Barrish, J. C.; Iwanowicz, E.; Lin, J.;
Bednarz, M. S.; Chen, B.-C. Tetrahedron Lett. 2001, 42, 4293. (g)
Soderberg, B. C. G.; Wallace, J. M.; Tamariz, J. Org. Lett. 2002, 4, 1339.
(h) Suginome, M.; Collet, S.; Ito, Y. Org. Lett. 2002, 4, 351. (i)
Mukhopadhyay, R.; Kundu, N. G. Tetrahedron Lett. 2000, 41, 9927. (j)
Bunce, R. A.; Herron, D. M.; Ackerman, M. L. J. Org. Chem. 2000, 65,
2847. (k) Banik, B. K.; Banik, I.; Hackfeld, L.; Becker, F. F. Heterocycles
2002, 56, 467. (l) Goswami, S.; Adak, A. K. Chem. Lett. 2003, 32, 678.
(9) (a) Attanasi, O. A.; De Crescentini, L.; Fillippone, P.; Mantellini,
F.; Santeusanio, S. Synlett 2003, 1183. (b) Tanaka, K.; Takahashi, H.;
Takimoto, K.; Sugita, M.; Mitsuhashi, K. J. Heterocycl. Chem. 1992, 29,
771. (c) Popat, K. H.; Nimavat, K. S.; Thaker, K. M.; Joshi, H. S. J. Ind.
Chem. Soc. 2003, 80, 709. (d) Subba Rao, K. V.; Subrahmanyam, M. Chem.
Lett. 2002, 234.
(10) Kher, S. M.; Cai, S. X.; Weber, E.; Keana, J. F. J. Org. Chem.
1995, 60, 5838.
(11) McNab, H. J. Chem. Soc., Perkin Trans. 1 1982, 1941.
(12) (a) Xekoukoulotakis, N. P.; Hadjiantoniou-Maroulis, C. P.; Maroulis,
A. J. Tetrahedron Lett. 2000, 41, 10299. (b) Maroulis, A. J.; Domzaridou,
K. C.; Hadjiantoniou-Maroulis, C. P. Synthesis 1998, 1769. (c) Amesto,
D.; Horspool, W. M.; Apoita, M.; Gallego, M. G.; Ramos, A. J. Chem.
Soc., Perkin Trans. 1 1989, 2035.
(13) Rahman, A.; Ila, H.; Junjappa, H. J. Chem. Soc., Chem. Commun.
1984, 430.
(14) (a) Meth-Cohn, O.; Rhouati, S.; Tarnowski, B.; Robinson, A. J.
Chem. Soc. 1981, 1537. (b) Makino, K.; Sakata, G.; Morimoto, K.
Heterocycles 1985, 23, 2069. (c) Sakata, G.; Makino, K.; Morimoto, K.
Heterocycles 1985, 23, 143.
a The 4-methoxy group in the product 3d was found to be replaced by
chlorine.
2170
Org. Lett., Vol. 7, No. 11, 2005