E. SOLEIMANI ET AL.
7
TABLE 4 Reaction of different cyclic α‐methylene ketones with 5‐chloro‐2‐aminobenzophenone by catalyst Fe3O4@SiO2/ZnCl2
Entry
cyclic α‐methylene ketones
cyclohexanone
Product
Yield %a (time, h)
94 (2)
Mp, oC (found)
1
2
3
3 h
3i
157
203
130
Dimedone
97 (2)
Tetronic acid
3j
87 (3)
aIsolated yields.
[2] a) D. C. Sherrington, A. P. Kybett, Supported Catalysts and Their Applica-
tions, RSC, Cambridge, UK 2001; b) P. Munnik, P. E. de Jongh, K. P. de
Jong, Chem. Rev 2015, 115, 6687.
[3] a) C. K. Bradsher, R. D. Brandau, J. E. Boliek, T. L. Hough, J. Org. Chem.
1969, 34, 2129; b) A. E. Legrand, The Surface Properties of Silicas, Wiley,
Chichester, New York, Weinheim, Brisbane, Singapore, Toronto 1998;
c) A. Katrib, C. Petit, P. Legare, L. Hilaire, G. Maire, Surf. Sci. 1987, 886,
189; d) R. Lamber, N. Jaeger, G. Schulz‐Ekloff, Surf. Sci. 1990, 26, 8227;
e) B. K. Min, A. K. Santral, D. W. Goodman, Catal. Today 2003, 85, 113.
[4] a) R. K. Iller, The Chemistry of Silica, John Wiley & Sons, New York 1979;
b) K. D. Kim, S. S. Kim, Y. H. Choa, H. T. Kim, J. Ind. Eng. Chem. 2007,
13, 1137. (c) M. Jafarzadeh, R. Adnan, M. K. N. Mazlan, J. Non‐Cryst.
Solids 2012, 385, 2981.
[5] a) J. Wang, B. Xu, H. Sun, G. Song, Tetrahedron Lett. 2013, 54, 238; b) B.
Li, L. Gao, F. Bian, W. Yu, Tetrahedron Lett. 2013, 54, 1063; c) A. Maleki,
Tetrahedron Lett. 2013, 54, 2055; d) J. Lee, Y. Lee, J. K. Youn, Biocompat.
Mater. 2008, 4, 143; e) E. Kim, J. Jang, J. S. Chung, Macromol. Res. 2014,
22, 864; f) S. D. Pan, H. Y. Shen, L. X. Zhou, X. H. Chen, Y. G. Zhao, M. Q.
Cai, M. C. Jin, J. Mater. Chem. A 2014, 2, 15345; g) B. Guoyi, L. Xingwang,
L. Xiaofang, Green Chem. 2014, 16, 3160; h) A. Palani, J. S. Lee,
J. Proteome Res. 2008, 7, 3591.
FIGURE 7 Reusability of the catalyst for the synthesis of synthesis of quin-
olines (model reaction: entry 1, Table 3)
by FT‐IR and spectral data and their mp values were com-
pared with literature reports.
[6] a) C. Lim, I. S. Lee, Nano Today 2010, 5, 412; b) V. Polshettiwar, R. Luque,
A. Fihri, H. Zhu, Chem. Rev. 2011, 111, 3036; c) B. Dam, S. Nandi, A. K.
Pal, Tetrahedron Lett. 2014, 55, 5236.
4
| CONCLUSION
[7] L. Rousseau, P. Matlaba, C. J. Parkinson, Tetrahedron Lett. 2007, 48, 4079.
[8] a) P. M. S. Chauhan, S. K. Srivastava, Curr. Med. Chem. 2001, 8, 1535; b)
M. Balasubramanian and J. G. Keay, in Comprehensive Heterocyclic Chem-
istry II, Vol. 5, (Eds: A. R. Katritzky and C. W. Rees), Pergamon Press, New
York 1996, p. 245; c) F. S. Yates, in Comprehensive Heterocyclic Chemistry,
Vol. 2, (Eds: A. J. Boulton and A. McKillop), Pergamon Press, New York
1984, Chapter 2.
This work reported on the preparation of Fe3O4@SiO2/ZnCl2
via functionalization of silica‐coated magnetic nanoparticles
with ZnCl2 by one‐pot synthesis containing continuously
three‐step reaction. The core‐shell nanoparticles were stable
and reusable, non‐toxic and inexpensive heterogeneous
nanocatalyst with great potential applications in organic syn-
theses. The Fe3O4@SiO2/ZnCl2 MNPs were used as an acid
catalyst for the synthesis of different quinolines with 2‐
aminoaryl ketone and various cyclic or acyclic β‐dicarbonyl
under solvent‐free condition with excellent yields and short
time. The major advantage of this catalyst was its ease of
the recovery, allowing it to be reused with slightly change
in its catalytic activity.
[9] a) K. Mogilaiah, D. S. Chowdary, R. B. Rao, Ind. J. Chem. 2001, 40B, 43;
b) Y. L. Chen, K. C. Fang, J. Y. Sheu, S. L. Hsu, C. C. Tzeng, J. Med. Chem.
2001, 44, 2374; c) D. Doube, M. Bloun, C. Brideau, C. Chan, S. Desmarais,
D. Eithier, J. P. Falgueyeret, R. W. Friesen, M. Girad, Y. Giard, J. Guay, P.
Tagari, R. N. Yong, Bioorg. Med. Lett. 1998, 8, 255.
[10] a) G. Roma, M. D. Braccio, G. Grossi, F. Mattioli, M. Ghia, Eur. J. Med.
Chem. 2000, 35, 1021; b) B. Kalluraya, S. Sreenizasa, Farmaco 1998, 53,
399; c) Y. Morizawa, T. Okazoe, S. Z. Wang, J. Sasaki, H. Ebisu, M.
Nishikawa, H. Shinyama, J. Fluor. Chem. 2001, 109, 83; d) P. L. Ferrarini,
C. Mori, M. Badawneh, V. Calderone, R. Greco, C. Manera, A. Martinelli,
P. Nieri, G. Saccomanni, Eur. J. Chem. 2000, 35, 815.
ACKNOWLEDGMENTS
[11] a) A. K. Aggarwal, S. A. Jenekhe, Macromolecules 1991, 24, 6806;
b) X. Zhang, A. S. Shetty, S. A. Jenekhe, Macromolecules 1999, 32, 7422;
c) S. A. Jenekhe, L. Lu, M. M. Alam, Macromolecules 2001, 34, 7315.
We gratefully acknowledge financial support from the
Research Council of Razi University.
[12] C. C. Cheng, S. J. Yan, Organic Reactions, volume. 28, John Wiley, New
York 1982 37.
REFERENCES
[13] A. Arcadi, M. Chiarini, S. D. Giuseppe, F. Marinelli, Synlett 2003, 203.
[1] a) E. Nikolla, Y. Roman‐Leshkov, M. Moliner, M. E. Davis, ACS Catal 2011,
1, 408; b) P. Barbaro, F. Liguori, Chem. Rev 2009, 109, 515.
[14] a) B. R. McNaughton, B. L. Miller, Org. Lett. 2003, 5, 4257; b) A. Walser,
T. Flyll, R. I. Fryer, J. Heterocycl. Chem. 1975, 12, 737.