C O M M U N I C A T I O N S
In conclusion, we have revealed that the fluoroionophore 1 shows
a specific red-shift response for the Na+ ion. The photophysical
properties of 1, which are the sharpness of the absorbance band,
the high extinction coefficient, and the high fluorescence quantum
yield, have been found to be advantageous for quantitative analyses.
We believe that the conformational restriction approach can be
extended to optical sensors for neutral molecules because the push-
pull interactions between the host and guest are unnecessary for
signal transduction, unlike that for PET and intramolecular charge
transfer (ICT). Unfortunately, the fluoroionophore 1 is hardly
soluble in water, as well as most of fluoroionophores, including
Finney’s molecules. However, a hydrophilic substituent in the place
of the branched alkyl chain at the 8-position may render the sensor
molecules useful in aqueous solution.11 The next step of this
investigation will be to enhance the wavelength shift using rigid
recognition sites, as well as the application for anions and neutral
molecules.
Figure 2. Response of absorption to added alkali salt.
Acknowledgment. We thank Prof. T. Sugawara and H. Segawa
for the fluorescence quantum yield measurements.
Supporting Information Available: Preparative procedures and
analytical data for compound 1 and its intermediates; Benesi-
Hildebrand plots of 1 with Na+ and K+ (PDF). This material is available
References
(1) Lo¨hr, H.-G.; Vo¨gtle, F. Acc. Chem. Res. 1985, 18, 65-72.
(2) (a) Minta, A.; Tsien, R. Y. J. Biol. Chem. 1989, 264, 19449-19457. (b)
Tong, A.-J.; Song, Y.-S.; Li, L.-D.; Hayashita, T.; Teramae, N.; Park, C.;
Bartsch, R. A. Anal. Chim. Acta 2000, 420, 57-64. (c) Gunnlaugsson,
T.; Nieuwenhuyzen, M.; Richard, L.; Thoss, V. J. Chem. Soc., Perkin
Trans. 2 2002, 141-150. (d) Gunnlaugsson, T.; Gunaratne, H. Q. N.;
Nieuwenhuyzen, M.; Leonard, J. P. J. Chem. Soc., Perkin Trans. 1 2002,
1954-1962. (e) He, H. R.; Mortellaro, M. A.; Leiner, M. J. P.; Young,
S. T.; Fraatz, R. J.; Tusa, J. K. Anal. Chem. 2003, 75, 549-555.
(3) (a) Leray, I.; O’Reilly, F.; Habib Jiwan, J.-L.; Soumillion, J.-Ph.; Valeur,
B. Chem. Commun. 1999, 795-796. (b) Jin, T. Chem. Commun. 1999,
2491-2492. (c) van der Veen, N. J.; Flink, S.; Deij, M. A.; Egberink, R.
J. M.; van Veggel, F. C. J. M.; Reinhoudt, D. N. J. Am. Chem. Soc. 2000,
122, 6112-6113.
Figure 3. Fluorescence spectra excited at 575 nm. (Inset) Titration curve.
the 1-Na+ complex was found to dramatically shift the absorbance
to longer wavelengths. It is likely that the two oxygen atoms at the
benzyl positions are in close proximity to each other in 1-Na+,
inducing a decrease of the dihedral angles between the dipyr-
romethene plane and the aryl planes. Contrary to Burgess’s
examples, the decrease may lead to an enhancement of the orbital
interaction, giving rise to the observed red shift.
In contrast to the absorption spectra, the emission maximum
shifted only slightly even when Na+ was added. It appears that the
structure of the singlet relaxed excited state of 1-Na+ resembles
that of the ion-free 1. Moreover, the fluorescence quantum yield
(Φf ) 0.68) does not change significantly by adding Na+. This is
in contrast to fluoroionophores relying on a PET mechanism. It
implies that the rates of fluorescence, internal conversion, inter-
system crossing, and PET (if present) are hardly changed by the
Na+ binding. For the purpose of a sensitive detection, titration data
in the emission mode were recorded by exciting at 575 nm, where
the increase in the absorbance is the highest (Figure 2). Figure 3
shows that the fluorescent intensity increases substantially with
increasing concentrations of Na+. A plot of relative intensity of
the fluorescence against log concentration of Na+ can be well fit
to a sigmoidal curve, and the Na+ concentration of an unknown
sample can be accurately determined from it.
(4) Kubo, K.; Sakurai, T. Heterocycles 2000, 52, 945-976.
(5) (a) McFarland, S. A.; Finney, N. S. J. Am. Chem. Soc. 2001, 123, 1260-
1261. (b) McFarland, S. A.; Finney, N. S. J. Am. Chem. Soc. 2002, 124,
1178-1179. (c) McFarland, S. A.; Finney, N. S. Chem. Commun. 2003,
388-389. (d) Fang, A. G.; Mello, J. V.; Finney, N. S. Tetrahedron 2004,
60, 11075-11087. (e) Cody, J.; Fahrni, C. J. Tetrahedron 2004, 60,
11099-11107.
(6) Haugland, R. P. Handbook of Fluorescent Probes and Research Chemicals,
9th ed.; Molecular Probes Inc.: Eugene, Oregon, 2002.
(7) Burghart, A.; Kim, H.; Welch, M. B.; Thoresen, L. H.; Reibenspies, J.;
Burgess, K. J. Org. Chem. 1999, 64, 7813-7819.
(8) Demmig, S.; Langhals, H. Chem. Ber. 1988, 112, 225-230.
(9) Yamada, K.; Toyota, T.; Takakura, K.; Ishimaru, M.; Sugawara, T. New
J. Chem. 2001, 25, 667-669.
(10) Benesi, H. A.; Hildebrand, J. H. J. Am. Chem. Soc. 1949, 71, 2703-
2707.
(11) (a) He, H.; Mortellaro, M. A.; Leiner, M. J. P.; Fraatz, R. J.; Tusa, J. K.
J. Am. Chem. Soc. 2003, 125, 1468-1469. (b) Guo, X.; Qian, X.; Jia, L.
J. Am. Chem. Soc. 2004, 126, 2272-2273.
JA042414O
9
J. AM. CHEM. SOC. VOL. 127, NO. 19, 2005 6957