4,6-Bis(dimesitylboryl)dibenzofuran
Organometallics, Vol. 24, No. 12, 2005 2899
Scheme 1
1). Encouraged by these results, we decided to attempt
the isolation of 4,5-dilithio-9,9-dimethylxanthene.22 This
objective was successfully achieved by treatment of 9,9-
dimethylxanthene with n-BuLi and tmeda in hexane,
which, upon cooling, resulted in the precipitation of 4,5-
dilithio-9,9-dimethylxanthene-1.5(tmeda) (2) as a pink
crystalline solid (Scheme 1). Compounds 1 and 2 are
extremely air sensitive and ignite when exposed to air.
The 1H NMR spectra of 1 (in pyridine-d5) and 2 (in
benzene-d6) are in agreement with the dimetalation of
the backbone.
Compound 1 crystallizes in the P21 space group and
forms a coordination polymer (Figure 1).23 This coordi-
nation polymer consists of dimeric units of 4,6-dilithio-
dibenzofuran that are linked by a bridging tmeda
molecule. In each dimeric unit, the dibenzofuran-4,6-
diyl moieties are bridged by four lithium atoms that are
coordinated to the deprotonated 4- and 6-positions of
the organic backbone. The resulting C-Li bond dis-
tances observed in 1 range from 2.16 to 2.33 Å and are
similar to those found in the structure of other aryl-
lithium derivatives such as phenyllithium-tmeda (av
C-Li ) 2.21 Å).24,25 Similarly to the situation encoun-
tered in the structure of phenyllithium-tmeda, the
lithium atoms Li(1) and Li(2) are chelated by tmeda
molecules and are tetracoordinated. Owing to positional
disorder affecting the tmeda ligands, the Li-N bond
distances are somewhat unreliable. The lithium atoms
Li(3) and Li(4) are coordinated to a single nitrogen atom
provided by the bridging tmeda ligand. As a result, these
Figure 1. Stick and ball representation of 1. H atoms
omitted for clarity. Only one conformation of the disordered
tmeda ligand is shown. Selected bond lengths (Å) and
angles (deg): Li(1)-N(5) 2.076(18), Li(1)-N(6) 2.154(17),
Li(1)-C(4) 2.229(16), Li(1)-C(24) 2.280(17),), Li(2)-N(3)
2.23(3), Li(2)-N(4) 2.21(2), Li(2)-C(4) 2.226(17), Li(2)-
C(24) 2.235(17), Li(3)-N(2) 2.167(15), Li(3)-C(6) 2.333(14),
Li(3)-C(26) 2.361(15), Li(4)-N(1) 2.022(16), Li(4)-C(6)
2.157(15), Li(4)-C(26) 2.231(14); N(5)-Li(1)-N(6) 91.4(7),
C(4)-Li(1)-C(26) 108.9(7), N(4)-Li(2)-N(3) 84.7(8), C(4)-
Li(2)-C(24) 110.7(7), N(2)-Li(3)-C(6) 112.0(6), N(2)-
Li(3)-C(24) 106.8(6), C(6)-Li(3)-C(26) 107.2(6), N(1)-
Li(4)-C(6) 124.7(7), N(1)-Li(4)-C(26) 115.2(6), C(6)-
Li(4)-C(26) 118.8(7).
two lithium atoms are tricoordinated, as sometimes
observed in the structure of bulky aryllithium deriva-
tives.26,27 While the Li(4) atom adopts a trigonal planar
arrangement (∑angles ) 358.7°), the coordination geom-
etry of the Li(3) atom is distinctly pyramidal (∑angles
)
326.0°), which is unusual but not unprecedented in
sterically crowded systems.28,29 Compound 2 crystallizes
in the Pbcn space group and forms a C2 symmetrical
dimer in which the two doubly deprotonated 9,9-
dimethylxanthenes are linked by four lithium atoms
(Figure 2).23 The Li(1) atom, which bridges the C(4) and
C(5A) carbon atoms (Li(1)-C(4) ) 2.209(3) Å and
Li(1)-C(5A) ) 2.402(3) Å), is also chelated by a tmeda
molecule (Li(1)-N(1) ) 2.120(3) Å, Li(1)-N(2) )
2.254(3) Å). As a result, its coordination geometry
resembles that encountered in phenyllithium-tmeda. As
indicated by the relatively short Li(2)-O (2.045(3) Å),
Li(2)-C(10) (2.394(3) Å), and Li(2)-C(4) (2.274(3) Å)
distances, one of the 9,9-dimethylxanthene-4,5-diyl
groups acts as a η3-ligand for the Li(2) atom. The
coordination sphere of this lithium atom is completed
(22) For recent examples of bimetallic complexes featuring a 9,9-
dimethylxanthene-4,5-diyl backbone, see: Malaise, G.; Barloy, L.;
Osborn, J. A. Tetrahedron Lett. 2001, 42, 7417-7419. Bronger, R. P.
J.; Kamer, P. C. J.; Van Leeuwen, P. W. N. M. Organometallics 2003,
22, 5338-5369. Raebiger, J. W.; Miedaner, A.; Curtis, C. J.; Miller, S.
M.; Anderson, O. P.; DuBois, D. L. J. Am. Chem. Soc. 2004, 126, 5502-
5514.
(23) Crystal data: 1: C42H60Li4N6O2, M ) 708.72, monoclinic space
group P21, a ) 12.644(2) Å, b ) 14.450(3) Å, c ) 13.141(3) Å, â )
118.007(3)°, V ) 2119.6(7) Å3, Z ) 2, Fcalcd ) 1.110 g cm-3, F(000) )
by
a deprotonated carbon atom (Li(2)-C(5A) )
764, T ) 110(2) K, 9469 measured reflections, 5749 unique (Rint
)
0.0389), µ ) 0.067 mm-1, R1 (I > σ) ) 0.0814, wR2 (I > 2σ) ) 0.1611
for 482 parameters. 2: C42H60Li4N6O2, M ) 792.88, orthorhombic space
group Pbcn, a ) 13.030(2) Å, b ) 17.639(3) Å, c ) 20.807(4) Å, V )
4782.2(15) Å3, Z ) 4, Fcalcd ) 1.101 g cm-3, F(000) ) 1720, T ) 110(2)
K, 29 265 measured reflections, 5892 unique (Rint ) 0.0645), µ ) 0.066
mm-1, R1 (I > 2σ) ) 0.0493, wR2 (I > 2σ) ) 0.1329 for 271 parameters.
3-toluene: C55H58B2O, M ) 776.84, monoclinic space group P21/c, a )
15.976(3) Å, b ) 18.738(4) Å, c ) 16.169(3) Å, â ) 114.29(3)°, V )
4411.7(15) Å3, Z ) 4, Fcalcd ) 1.139 g cm-3, F(000) ) 1624, T ) 293(2)
K, 20 177 measured reflections, 6854 unique (Rint ) 0.0351), µ ) 0.065
mm-1, SADABS absorption correction, Tmin/Tmax 0.688081, R1 (I > 2σ)
) 0.0871, wR2 (I > 2σ) ) 0.1720 for 572 parameters.
2.142(3) Å) provided by another 9,9-dimethylxanthene-
4,5-diyl ligand and a nitrogen atom of a bridging tmeda
molecule (Li(2)-N(3) ) 2.184(3) Å). All Li-C and Li-N
distances observed in 2 fall within the expected range
for such linkages.24,25
(26) Girolami, G. S.; Riehl, M. E.; Suslick, K. S.; Wilson, S. R.
Organometallics 1992, 11, 3907-3910.
(27) Rabe, G. W.; Sommer, R. D.; Rheingold, A. L. Organometallics
2000, 19, 5537-5540.
(24) Schubert, U.; Neugebauer, W.; Schleyer, P. V. Chem Commun.
1982, 1184-1185.
(28) Goldfuss, B.; Eisentrager, F. Aust. J. Chem. 2000, 53, 209-
212.
(25) Dinnebier, R. E.; Behrens, U.; Olbrich, F. J. Am. Chem. Soc.
1998, 120, 1430-1433.
(29) Smith, G. D.; Fanwick, P. E.; Rothwell, I. P. Inorg. Chem. 1989,
28, 618-620.