1306
D. B. G. Williams et al. / Carbohydrate Research 340 (2005) 1301–1309
purified by flash chromatography to afford the silyl ether
as an oil (85 mg, 0.28 mmol, 70%).
1H NMR: (300 MHz, CDCl3) dH 7.27–7.23 (m, 1H, aro-
matic), 7.12–7.09 (m, 1H, aromatic), 6.99–6.94 (m, 1H,
aromatic), 5.13 (dd, 1H, J 9.3 and 2.4 Hz, H1), 4.78
(d, 1H, J 3.0 Hz, OH), 4.34 (dd, 1H, J 9.6 and 5.4 Hz,
H3), 4.14 (dd, 1H, J 9.3 and 5.4 Hz, H2), 3.96–3.65
(m, 3H, H4, H5a and b), 3.42 (d, 1H, J 3.3 Hz, OH),
1.38 (s, 3H, CH3-isopropylidene), 1.29 (s, 3H, CH3-iso-
propylidene), 0.91 (s, 9H, C(CH3)3), 0.10 (s, 6H,
SiCH3 · 2); 13C NMR: (75 MHz, CDCl3) dC 144.9
(C10), 126.4 (C30), 124.9 (C20), 124.6 (C40), 109.0 (ace-
tal-C), 81.5 (C3), 77.2 (C2), 69.3 (C5), 68.0 (C1), 64.2
(C4), 28.1 (CH3-isopropylidene), 25.9 (C(CH3)3), 25.4
(CH3-isopropylidene), 18.4 (C(CH3)3), ꢀ5.27 (SiCH3),
ꢀ5.33 (SiCH3); HRMS: Found 388.1751. Calculated
for C18H32O5SSi 388.1740; EIMS: m/z 388 (M+, 2%),
275 (M+ꢀthiophenylꢀC2H6, 13%), 73 (100%).
TLC: Rf 0.80 (3:1 hexanes–EtOAc); 1H NMR:
(300 MHz, CDCl3) dH 5.26 (d, 1H, J 12.0 Hz, H1),
4.72 (d, 1H, J 12.0 Hz, OH), 4.67 (d, 1H, J 5.7 Hz,
H2), 4.48 (d, 1H, J 5.7 Hz, H3), 4.34 (br s, 1H, H4),
3.73–3.75 (m, 2H, H5), 1.47 (s, 3H, CH3-isopropylid-
ene), 1.30 (s, 3H, CH3-isopropylidene), 0.91 (s, 9H,
C(CH3)3), 0.12 (s, 6H, SiCH3 · 2); 13C NMR:
(75 MHz, CDCl3) dC 112.0 (acetal C), 103.4 (C1), 87.6
and 87.0 (C3, C2), 81.7 (C4), 64.8 (C5), 26.5 (CH3-iso-
propylidene), 25.8 (C(CH3)3), 25.0 (CH3-isopropylid-
ene), 18.3 (C(CH3)3), ꢀ5.6 (SiCH3 · 2); HRMS:
Found 304.1711. Calculated for C14H28O5Si 304.1706;
EIMS: m/z 289 (M+ꢀCH3, 15%), 247 (M+ꢀt-Bu,
65%), 189 (M+ꢀTBDMS, 65%), 75 (100%).
3.9. 1-(1-Butyl)-5-O-tert-butyldimethylsilyl-2,3-O-isopro-
pylidene-D-ribitol (9)
3.10.2. Diastereomer 2. TLC: Rf 0.34 (5:1 hexanes–
EtOAc); IR (CHCl3); mmax 3451, 2902, 1252,
1
1073 cmꢀ1; H NMR: (300 MHz, CDCl3) dH 7.27–7.22
A Grignard reaction (see compound 4) of 8 (500 mg,
1.645 mmol) using butylmagnesium bromide (16.45
mmol) afforded the desired diol as a colourless oil after
chromatography (8:1 hexanes–EtOAc) (420 mg, 1.159
mmol, 70%).
(m, 1H, aromatic), 7.07–7.05 (m, 1H, aromatic), 7.98–
6.94 (m, 1H, aromatic), 5.39 (dd, 1H, J 7.8 and
1.7 Hz, H1), 4.70 (dd, 1H, J 6.3 and 2.4 Hz, H3), 4.13
(dd, 1H, J 9.3 and 6.3 Hz, H2), 4.15–4.01 (m, 1H,
H4), 3.82 (dd, 1H, J = 10.2 and 3.3 Hz, H5a), 3.69
(dd, 1H, J 10.2 and 5.1 Hz, H5b), 3.11 (d, 1H, J
7.8 Hz, OH), 2.75 (d, 1H, J 5.7 Hz, OH), 1.53 (s, 3H,
CH3-isopropylidene), 1.36 (s, 3H, CH3-isopropylidene),
0.89 (s, 9H, C(CH3)3), 0.08 (s, 6H, SiCH3 · 2); 13C
NMR: (75 MHz, CDCl3) dC 145.9 (C10), 126.4 (C30),
125.0 (C20), 124.4 (C40), 108.7 (acetal-C), 80.0 (C3),
76.3 (C2), 69.3 (C5), 67.5 (C1), 64.3 (C4), 26.9 (CH3-iso-
propylidene), 25.9 (C(CH3)3), 24.7 (CH3-isopropylid-
ene), 18.4 (C(CH3)3), ꢀ5.27 (SiCH3), ꢀ5.38 (SiCH3);
HRMS: Found 388.1748. Calculated for C18H32O5SSi
388.1740; EIMS: m/z 275 (M+ꢀthiophenylꢀC2H6,
13%), 43 (100%).
TLC: Rf 0.39 (8:1 hexanes–EtOAc); IR (CHCl3); mmax
3600, 3340, 3040, 2960, 1710, 1680 cmꢀ1 1H NMR:
;
(300 MHz, CDCl3) dH 4.09 (br s, 1H, OH), 4.02–3.95
(m, 2H, H2 and H4), 3.87–3.75 (m, 2H, H1 and H3),
3.85 (dd, 1H, J 9.9 and 3.3 Hz, H5a), 3.60 (dd, 1H, J
9.9 and 7.2 Hz, H5b), 3.29 (br s, 1H, OH), 1.80–1.30
(m, 6H, (CH2)3CH3), 1.34 (s, 3H, CH3-isopropylidene),
1.30 (s, 3H, CH3-isopropylidene), 0.89 (s, 12H, C(CH3)3,
(CH2)3CH3), 0.07 (s, 6H, SiCH3 · 2); 13C NMR:
(75 MHz, CDCl3) dC 108.4 (acetal-C), 81.1 (C2), 77.4
(C3), 69.3 (C4), 68.9 (C1), 64.4 (C5), 33.8 (C10), 28.1
(CH3-isopropylidene), 27.5 (CH3-isopropylidene), 25.9
(C(CH3)3), 25.5 (C20), 22.9 (C30) 18.4 (C(CH3)3), 14.2
(C40), ꢀ5.29 (SiCH3), ꢀ5.34 (SiCH3); HRMS: Found
362.2491 Calculated for C18H38O5Si 362.2489; EIMS:
m/z 362 (M+, 20%), 331 (M+ꢀC2H7, 100%).
3.11. (3S,4R)-1-O-tert-Butyldimethylsilyl-1,3,4-trihy-
droxy-3,4-O-isopropylidene-2,5-nonanedione (11)
The general Swern oxidation method (see compound 2)
was used to oxidise 9 (362 mg, 1.000 mmol). The prod-
uct was purified by column chromatography (5:1 hex-
anes–EtOAc) to afford the dione as an oil (257 mg,
0.718 mmol, 72%).
3.10. 5-O-tert-Butyldimethylsilyl-2,3-O-isopropylidene-1-
(thiophen-2-yl)-D-ribitol (10)17
The general procedure to introduce a thiophene group
using thiophene (505 mg, 6.00 mmol) and n-BuLi (see
compound 2) was carried out with the protected ribose
derivative 8 (608 mg, 2.000 mmol). The crude product
was then purified on a silica column. Two diastereomers
could be isolated as light yellow oils (total yield 460 mg,
1.186 mmol, 59%), which were combined and used as a
mixture in the following step.
TLC: Rf 0.42 (5:1 hexanes–EtOAc); IR (CHCl3); mmax
3600, 3440, 3040, 2960, 1720 cmꢀ1
;
1H NMR:
(300 MHz, CDCl3) dH 4.91 (d, 1H, J 6.9 Hz, H3), 4.83
(d, 1H, J 6.9 Hz, H4), 4.43 (d, 1H, J 17.7 Hz, H1a),
4.29 (d, 1H, J 17.7 Hz, H1b), 2.66–2.47 (m, 2H,
CH2(CH2)2CH3), 1.57–1.23 (m, 4H, CH2(CH2)2CH3),
1.51 (s, 3H, CH3-isopropylidene), 1.40 (s, 3H, CH3-iso-
propylidene), 0.89–0.87 (m, 12H, (CH2)3CH3, C(CH3)3),
0.07 (s, 3H, SiCH3), 0.06 (s, 3H, SiCH3); 13C NMR:
(75 MHz, CDCl3) dC 208.2 (C5), 204.7 (C2), 111.1
3.10.1. Diastereomer 1. TLC: Rf 0.40 (5:1 hexanes–
EtOAc); IR (CHCl3); mmax 3452, 2902, 1251, 1073 cmꢀ1
;