ACS Catalysis
Page 4 of 6
C(sp2)-H bonds. Taking p-xylene 1a as an example, a plausible
Notes
mechanistic cycle for this C(sp2)-H phosphonylation was
outlined in Figure 2. Initially, the excited state acridinium
photocatalyst13 excited by the irradiation of commercial
available blue LEDs is capable of oxidizing p-xylene 1a,
1
2
3
4
5
6
7
8
The authors declare no competing financial interest.
ACKNOWLEDGMENT
This work was supported by the 973 Program (2011CB808600,
2012CB725302, 2013CB834804), the National Natural Science
Foundation of China (21390400, 21272180, 21302148, 2109343
and 21402217), and the Research Fund for the Doctoral Program
of Higher Education of China (20120141130002) and the Ministry
of Science and Technology of China (2012YQ120060) and the
Program for Changjiang Scholars and Innovative Research Team
in University (IRT1030). The Program of Introducing Talents of
Discipline to Universities of China (111 Program) is also
appreciated.
-
generating the Acr+-Mes ClO4 radical and the corresponding
arene radical cation 11. Herein, we believe that the P(OEt)3 2a
acts as a nucleophile to capture the arene radical cation, and
delivers the adduct 12. Then, the proton-reduction Co(III)
catalyst is responsible for producing the intermediate 13 by a
single electron transfer, which oneself be reduced to give the
Co(II). A rapid deprotonation affords the phosphorus cation
intermediate 14. With the help of the additive CH3COONH4
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
leading
a
nucleophilic displacement step,4b the aryl
phosphonium salt 14 is converted into the final phosphonylation
product 3a.14 It is considered that the regeneration of the
photocatalyst is resulted from the oxidation by Co(II) and
generates Co(I). As a result, the protonation of Co(I) affords
Co(III)-H15 and H2 can be released by the protonation of
Co(III)-H to accomplish the Co catalytic cycle.
REFERENCES
(1) (a) Moonen, K.; Laureyn, I.; Stevens, C. V. Chem. Rev. 2004, 104,
6177-6216; (b) Branion, S.; Benin, V. Synth. Commun. 2006, 36, 2121-
2127; (c) Guga, P. Curr. Top. Med. Chem. 2007, 7, 695-713; (d)
Horsman, G. P.; Zechel, D. L. Chem. Rev. 2017, 117, 5704–5783.
(2) (a) Hirao, T.; Masunaga, T.; Ohshiro, Y.; Agawa, T. Tetrahedron
Lett. 1980, 21, 3595-3598; (b) Hirao, T.; Masunaga, T.; Yamada, N.;
Ohshiro, Y.; Agawa, T. Bull. Chem. Soc. Jpn. 1982, 55, 909-913.
(3) (a) Baillie, C.; Xiao, J. Curr. Org. Chem. 2003, 7, 477-514; (b)
Demmer, C. S.; Krogsgaard-Larsen, N.; Bunch, L. Chem. Rev. 2011,
111, 7981-8006; (c) Gelman, D.; Jiang, L.; Buchwald, S. L. Org. Lett.
2003, 5, 2315-2318; (d) Zhuang, R.; Xu, J.; Cai, Z.; Tang, G.; Fang,
M.; Zhao, Y. Org. Lett. 2011, 13, 2110-2113; (e) Zhao, Y.-L.; Li, Y.;
Li, S.-M.; Zhou, Y.-G.; Sun, F.-Y.; Gao, L.-X.; Han, F.-S. Adv. Synth.
Catal. 2011, 353, 1543–1550; (f) Zhang, H. Y.; Sun, M.; Ma, Y. N.;
Tian, Q. P.; Yang, S. D. Org. Biomol. Chem. 2012, 10, 9627-9623.
(4) (a) Minisci, F.; Citterio, A.; Giordano, C. Acc. Chem. Res. 1983, 16,
27–32; (b) Effenberger, F.; Kottmann, H. Tetrahedron 1985, 41, 4171-
4182; (c) Kottmann, H.; Skarzewski, J.; Effenberger, F. Synthesis 1987,
9, 797-801; (d) Kagayama, T.; Nakano, A.; Sakaguchi, S.; Ishii, Y. Org.
Lett. 2006, 8, 407-409; (e) Feng, C. G.; Ye, M.; Xiao, K. J.; Li, S.; Yu,
J. Q. J. Am. Chem. Soc. 2013, 135, 9322-9325; (f) Li, C.; Yano, T.;
Ishida, N.; Murakami, M. Angew. Chem., Int. Ed. 2013, 52, 9801-9804;
(g) Wang, S.; Guo, R.; Wang, G.; Chen, S. Y.; Yu, X. Q. Chem.
Commun. 2014, 50, 12718-12721; (h) Chen, Z.; Wang, B.; Zhang, J.;
Yu, W.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2015, 2, 1107-1295; (i)
Lin, W.; Su, F.; Zhang, H. J.; Wen, T. B. Eur. J. Org. Chem. 2017, 13,
1757-1759; (j) Wang, C.-S.; Dixneuf, P. H.; Soule, J.-F.
ChemCatChem. 2017, 10.1002/cctc.201700557.
(5) (a) Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527-532;
(b) Narayanam, J. M.; Stephenson, C. R. Chem. Soc. Rev. 2011, 40,
102-113; (c) Xuan, J.; Xiao, W. J. Angew. Chem., Int. Ed. 2012, 51,
6828-6838; (d) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. Chem.
Rev. 2013, 113, 5322-5363; (e) Hari, D. P.; Konig, B. Angew. Chem.,
Int. Ed. 2013, 52, 4734-4743; (f) Ravelli, D.; Protti, S.; Fagnoni, M.
Chem. Rev. 2016, 116, 9850-9913; (g) Romero, N. A.; Nicewicz, D. A.
Chem. Rev. 2016, 116, 10075-10166; (h) Ohkubo, K.; Fujimoto, A.;
Fukuzumi, S. J. Am. Chem. Soc. 2013, 135, 5368-5371; (i) Romero, N.
A.; Margrey, K. A.; Tay, N. E.; Nicewicz, D. A. Science 2015, 349,
1326-1330; (j) Hu, X. Q.; Qi, X.; Chen, J. R.; Zhao, Q. Q.; Wei, Q.;
Lan, Y.; Xiao, W. J. Nat. Commun. 2016, 7, 11188-11200; (k) Quint,
Figure 2. Proposed mechanism for visible light-induced
oxidant-free oxidative C(sp2)-H phosphonylation (PC:
-
photocatalyst Acr+-Mes ClO4 ; Co: Co(dmgH)(dmgH2)Cl2
catalyst).
In conclusion, we have demonstrated
a mild and
chemoselective nature of visible light-induced external oxidant-
free oxidative phosphonylation of C(sp2)-H bonds. Various
kinds of C(sp2)-H bonds including methylarenes, anisoles,
polycyclic aromatic hydrocarbons, heteroaromatics, anilines
and olefins derivatives can be phosphonylated efficiently,
making it appealing for late stages of synthesis programs.
Moreover, mechanistic studies show that the single electron
oxidation of electron-rich aromatic rings or olefins is the key
reaction step for this phosphonylation conversion. The
development of related functionalization of C(sp2)-H bonds is
underway in our laboratory.
V.; Morlet-Savary, F.; Lohier, J. F.; Lalevee, J.; Gaumont, A. C.;
Lakhdar, S. J. Am. Chem. Soc. 2016, 138, 7436-7441; (l) Bian, C.;
Singh, A. K.; Niu, L.; Yi, H.; Lei, A. Asian J. Org. Chem. 2017, 6, 386-
396; (m) Shaikh, R. S.; Dusel, S. J.; Konig, B. ACS Catal. 2017, 6,
8410-8414.
(6) (a) Zhao, Z.; Min, Z.; Dong, W.; Peng, Z.; An, D. Synth. Commun.
2016, 46, 128-133; (b) Peng, P.; Peng, L.; Wang, G.; Wang, F.; Luo,
Y.; Lei, A. Org. Chem. Front. 2016, 3, 749-752; (c) Shaikh, R.; Ghosh,
I.; König, B. Chem. - Eur. J. 2017, 10.1002/chem.201701283.
(7) (a) Zheng, Y. W.; Chen, B.; Ye, P.; Feng, K.; Wang, W.; Meng, Q.
Y.; Wu, L. Z.; Tung, C. H. J. Am. Chem. Soc. 2016, 138, 10080-10083;
(b) Zhang, G.; Hu, X.; Chiang, C.-W.; Yi, H.; Pei, P.; Singh, A. K.; Lei,
A. J. Am. Chem. Soc. 2016, 138, 12037-12040; (c) Yi, H.; Niu, L.; Song,
́
ASSOCIATED CONTENT
Supporting Information.
The Supporting Information is available free of charge via the
data about mechanism study, condition investigation, and
characterization (PDF)
̈
̈
AUTHOR INFORMATION
Corresponding Author
ACS Paragon Plus Environment