ity of imidazolin-2-ylidene and imidazol-2-ylidene toward acti-
vated acetylenes and aldehydes. The resulting novel multi-
component reactions are the subject of this communication.
Our studies commenced with exposure of tert-butyl-
substituted imidazolin-2-ylidene, generated by the deproto-
nation of corresponding imidazolinium salt13 9 using NaH
in dry toluene, with methyl phenylpropiolate and 4-triflu-
oromethyl benzaldehyde at 90 °C. The reaction afforded the
aminofuran derivative 10a in good yield (Scheme 2).14
a
13C resonance signal at δ 165.1 supporting the IR
absorption at 1723 cm-1.
A variety of aromatic aldehydes were found to be suitable
candidates for aminofuran synthesis, and methyl phenylpro-
piolate was found to be a suitable acetylenic component. The
results are summarized in Table 1.
Table 1.
Scheme 2
entry
aldehyde
product
yield (%)
1
2
3
4
5
6
7
R′ ) 3,4-dichlorophenyl, 7b
R′) 4-chlorophenyl, 7c
R′ ) 4-bromophenyl, 7d
R′ ) phenyl, 7e
R′ ) 4-methylphenyl, 7f
R′ ) 4-fluorophenyl, 7g
R′ ) 2-thienyl, 7h
10b
10c
10d
10e
10f
53
55
65
47
40
54
55
The structure of the product 10a was established by
spectroscopic and X-ray analysis (Figure 1).15 The car-
10g
10h
Encouraged by the results obtained with tert-butyl-
substituted imidazolin-2-ylidene, we turned our attention to
1,3-di-tert-butylimidazol-2-ylidene. To our surprise, the car-
bene formed in situ failed to react with methyl phenylpropio-
late and aldehydes. However, the reaction of the carbene with
dimethyl acetylenedicarboxylate (DMAD) and 4-fluoroben-
zaldehyde proceeded smoothly to deliver an acyclic four-
component adduct 13a in 52% yield (Scheme 3).16
Scheme 3
Figure 1. Single-crystal X-ray structure of compound 10a.
The structure of the product 13a was established by
spectroscopic analysis. Four methoxycarbonyl groups reso-
bomethoxy protons resonated as a singlet at δ 3.63 while
the methylene protons displayed two separate sets of triplets,
centered at δ 3.12 (J ) 6.5 Hz) and δ 2.37 (J ) 6.5 Hz), in
(6) (a) Teles, J. H.; Melder, J. P.; Ebel, K.; Schneider, R.; Gehrer, E.;
Harder, W.; Brode, S.; Enders, D.; Breuer, K.; Rabbe, G. HelV. Chim. Acta
1996, 79, 1271. (b) Davis, J. H., Jr.; Forrester, K. Tetrahedron Lett. 1999,
40, 1621. (c) Enders, D.; Breuer, K.; Runsink, J.; Teles, J. H. HelV. Chim.
Acta 1996, 79, 1899. (d) Enders, D.; Kallfass, U. Angew. Chem., Int. Ed.
2002, 41, 1743. (e) Kerr, M. S.; Read de Alaniz, J.; Rovis, T. J. Am. Chem.
Soc. 2002, 124, 10298.
(7) Enders, D.; Balensiefer, T. Acc. Chem. Res. 2004, 37, 534 and
references therein.
(8) Nair, V.; Bindu, S.; Sreekumar, V. Angew. Chem., Int. Ed. 2004, 43,
5130.
1
the H NMR spectrum. The ester carbonyl group displayed
(4) (a) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290. (b)
Herrmann, W. A.; Ko¨cher, C. Angew. Chem., Int. Ed. Engl. 1997, 36, 2162.
(c) Weskamp, T.; Schattenmann, W. C.; Spiegler, M.; Herrmann, W. A.
Angew. Chem., Int. Ed. 1998, 37, 2490. (d) Nolan, S. P.; Kelly, R. A., III;
Navarro, O. J. Am. Chem. Soc. 2003, 125, 16194.
(5) (a) Grasa, G. A.; Kissling, R. M.; Nolan, S. P. Org. Lett. 2002, 4,
3583. (b) Grasa, G. A.; Gu¨veli, T.; Singh, R.; Nolan, S. P. J. Org. Chem.
2003, 7, 2812. (c) Nyce, G. W.; Lamboy, J. A.; Connor, E. F.; Waymouth,
J. L.; Hedrick, R. M. Org. Lett. 2002, 4, 3587. (d) Singh, R.; Kissling, R.
M.; Letellier, M.-A.; Nolan, S. P. J. Org. Chem. 2004, 69, 209.
(9) Enders, D.; Breuer, K.; Raabe, J.; Runsink, J.; Teles, J. H. Liebigs
Ann. 1996, 2019.
(10) (a) Rigby, J. H.; Wang, Z. Org. Lett. 2002, 4, 4289. (b) Rigby, J.
H.; Wang Z. Org. Lett. 2003, 5, 263.
2298
Org. Lett., Vol. 7, No. 12, 2005