Communication
Organic & Biomolecular Chemistry
irreversible as opposed to what has been observed by Bode for
the FCB of benzyl hydroxamates in the presence of BF3·Et2O.17
The benzylic carbocation 34 would react with the arene nucleo-
phile (Ar2–H) to produce the 1,1-diarylmethane product.
This proposal is further supported by the fact that, as
shown in Scheme 2, in situ generated benzyl triflate 36, which
bears some structural resemblance with the proposed alkoxy-
N,N-diethylaminodifluorosulfane intermediate 33, reacted in a
similar fashion providing the 1,1-diarylmethane 5 in an un-
optimized 65% isolated yield (89% NMR yield). Finally, while
in this system HFIP is not directly involved in the transformation,
the slight improvements observed in its presence (c.f. Table 1)
suggest that it may nevertheless facilitate the reaction, likely
because of its polar nature and high ionizing power.4
In summary, we have reported the Friedel–Crafts benzy-
lation of arenes using benzyl alcohols, which are activated in situ
with XtalFluor-E. A wide range of 1,1-diarylmethanes and
1,1,1-triarylmethanes can be prepared in moderate to excellent
yields. The reaction proceeds under experimentally simple and
mild conditions, without the need for a transition metal or a
strong Lewis acid. Notably, the reactivity observed herein
demonstrates the potential of XtalFluor-E to induce C–OH
bond ionization and SN1 reactivity of benzyl alcohols.
S. Clayton, D. Tovell, F. Beaulieu and J.-F. Paquin, J. Fluor-
ine Chem., 2013, 15, 57.
7 (a) M.-F. Pouliot, O. Mahé, J.-D. Hamel, J. Desroches and
J.-F. Paquin, Org. Lett., 2012, 14, 5428; (b) A. Cochi,
D. G. Pardo and J. Cossy, Eur. J. Org. Chem., 2012, 2023;
(c) M.-F. Pouliot, L. Angers, J.-D. Hamel and J.-F. Paquin,
Tetrahedron Lett., 2012, 53, 4121; (d) A. Cochi, D. G. Pardo
and J. Cossy, Org. Lett., 2011, 13, 4442.
8 For selected recent examples of FC benzylation using
benzylic alcohols or 1,1-diarylmethanols, see: (a) I. Iovel,
K. Mertins, J. Kischel, A. Zapf and M. Beller, Angew. Chem.,
Int. Ed., 2005, 44, 3913; (b) J. A. McCubbin and
O. V. Krokhin, Tetrahedron Lett., 2010, 51, 2447;
(c) M. Niggemann and M. J. Meel, Angew. Chem., Int. Ed.,
2010, 49, 3684; (d) P. Shukla, M. K. Choudhary and
S. K. Nayak, Synlett, 2011, 1585; (e) M. M. Khodaei and
E. Nazari, Tetrahedron Lett., 2012, 53, 5131; (f) Y. Sawama,
Y. Shishido, T. Kawajiri, R. Goto, Y. Monguchi and
H. Sajiki, Chem. – Eur. J., 2014, 20, 510; (g) S. Zhang,
X. Zhang, X. Ling, C. He, R. Huang, J. Pan, J. Li and
Y. Xiong, RSC Adv., 2014, 4, 30768; (h) R. Nallagonda,
M. Rehan and P. Ghorai, J. Org. Chem., 2014, 79, 2934.
9 H. Mayr, B. Kempf and A. R. Ofial, Acc. Chem. Res., 2003,
36, 66.
This work was supported by the Canada Research Chair
Program, the Natural Sciences and Engineering Research 10 In all cases, the regioisomers could not be separated by
Council of Canada, the Canada Foundation for Innovation, flash chromatography.
FQRNT Centre in Green Chemistry and Catalysis (CGCC) and 11 The pure 1,1-diarylmethanes 6, 13–14 could not be
the Université Laval. We thank OmegaChem for a generous
gift of XtalFluor-E.
obtained during chromatography as they co-eluted with the
excess arene nucleophile.
12 We have no explanation up to now for the unusual ortho
selectivity observed. For a related case, see: S. Sinha,
B. Mandal and S. Chandrasekaran, Tetrahedron Lett., 2000,
41, 9109.
Notes and references
13 See ESI† for details.
14 A. Sutherland and J. C. Vederas, Chem. Commun., 1999,
1739.
1 (a) M. S. Shchepinov and V. A. Korshun, Chem. Soc. Rev.,
2003, 32, 170; (b) V. Nair, S. Thomas, S. C. Mathew and
K. G. Abhilash, Tetrahedron, 2006, 62, 6731.
15 For recent examples where benzylic carbocation intermedi-
ate are involved, see: (a) G. Onodera, E. Yamamoto,
S. Tonegawa, M. Iezumi and R. Takeuchi, Adv. Synth.
Catal., 2011, 353, 2013; (b) C. Liébert, M. K. Brinks,
A. G. Capacci, M. J. Fleming and M. Lautens, Org. Lett.,
2011, 13, 3000; (c) F. D. King, A. E. Aliev, S. Caddick and
D. A. Tocher, J. Org. Chem., 2013, 78, 10938; (d) X. Pan,
M. Li and Y. Gu, Chem. – Asian J., 2014, 9, 268.
16 (a) D. H. Brown, K. D. Crosbie, J. I. Darragh, D. S. Ross and
D. W. A. Sharp, J. Chem. Soc. A, 1970, 914; (b) R. Keat,
D. S. Ross and D. W. A. Sharp, Spectrochim. Acta, 1971, 27A,
2219.
2 For a recent review on Friedel–Crafts alkylation, see:
M. Rueping and B. J. Nachtsheim, Beilstein J. Org. Chem.,
2010, 6, No. 6.
3 P. A. Champagne, Y. Benhassine, J. Desroches and J.-F. Paquin,
Angew. Chem., Int. Ed., 2014, 53, 13835.
4 J.-P. Bégué, D. Bonnet-Delpon and B. Crousse, Synthesis,
2004, 18.
5 R. P. Singh and J. M. Shreeve, Synthesis, 2002, 2561.
6 (a) F. Beaulieu, L.-P. Beauregard, G. Courchesne, M. Couturier,
F. Laflamme and A. L’Heureux, Org. Lett., 2009, 11, 5050;
(b) A. L’Heureux, F. Beaulieu, C. Bennet, D. R. Bill,
S. Clayton, F. Laflamme, M. Mirmehrabi, S. Tadayon,
D. Tovell and M. Couturier, J. Org. Chem., 2010, 75, 3401;
(c) O. Mahé, A. L’Heureux, M. Couturier, C. Bennett,
17 G. Schäfer and J. W. Bode, Angew. Chem., Int. Ed., 2011, 50,
10913.
2246 | Org. Biomol. Chem., 2015, 13, 2243–2246
This journal is © The Royal Society of Chemistry 2015