10.1002/anie.201812806
Angewandte Chemie International Edition
COMMUNICATION
R. Natarajan, P. S. Baran, Science 2015, 348, 886891; b) K. Zhu, M.
P. Shaver, S. P. Thomas, Chem. Sci. 2016, 7, 30313035; c) K. Zhu, M.
P. Shaver, S. P. Thomas, Chem. Asian J. 2016, 11, 977980; d) J. Xiao,
Y. He, F. Ye, S. Zhu, Chem 2018, 4, 16451657.
P) for financial support. R. H.-R. and C. V. thank Ministerio de
Educación and Universidad de Burgos for pre-doctoral contracts,
respectively. S. S.-P. thanks Junta de Castilla y León and
FEDER for a post-doctoral contract.
[13] C. W. Cheung, X. Hu, Nat. Commun. 2016, 7, 12494.
[14] M. Corpet, C. Gosmini, Synthesis 2014, 46, 22582271. See also ref.
[8a].
Keywords: amination • boronic acids • molybdenum • nitro
[15] a) I. Sapountzis, P. Knochel, J. Am. Chem. Soc. 2002, 124,
93909391; b) I. Sapountzis, P. Knochel, Angew. Chem. Int. Ed. 2004,
43, 897900; Angew. Chem. 2004, 116, 915918.
[16] a) M. Rauser, C. Ascheberg, M. Niggemann, Angew. Chem. Int. Ed.
2017, 56, 1157011574; Angew. Chem. 2017, 129, 1172811732; b) M.
Rauser, C. Ascheberg, M. Niggemann, Chem. Eur. J. 2018, 24,
39703974.
compounds • reduction
[1]
a) Amino Group Chemistry, (Ed.: A. Ricci), Wiley-VHC: Weinheim,
2008; b) M. Liang, J. Chen, Chem. Soc. Rev. 2013, 42, 34533488; c)
J. Wang, K. Liu, L. Ma, X. Zhan, Chem. Rev. 2016, 116, 1467514725.
R. N. Salvatore, C. H. Yoon, K. W. Jung, Tetrahedron 2001, 57,
77857811.
For selected reviews, see: a) J. Bariwal, E. V. der Eicken, Chem. Soc.
Rev. 2013, 42, 92839303; b) P. Ruiz-Castillo, S. L. Buchwald, Chem.
Rev. 2016, 116, 1256412649.
[2]
[3]
[17] Boronic Acids, Vols. 1&2, (Ed.: D. G. Hall), Wiley-VHC: Weinheim,
2011. For a highlight on the amination of boronic acids, see: V.
Coeffard, X. Moreau, C. Thomassigny, C. Greck, Angew. Chem. Int. Ed.
2013, 52, 56845686; Angew. Chem. 2013, 125, 57945796.
[18] T. V. Nykaza, J. C. Cooper, G. Li, N. Mahieu, A. Ramírez, M. R. Luzung,
A. T. Radosevich, J. Am. Chem. Soc. 2018, 140, 1520015205.
[19] a) N. García, P. García-García, M. A. Fernández-Rodríguez, R. Rubio,
M. R. Pedrosa, F. J. Arnáiz, R. Sanz, Adv. Synth. Catal. 2012, 354,
321327; b) N. García, P. García-García, M. A. Fernández-Rodríguez,
D. García, M. R. Pedrosa, F. J. Arnáiz, R. Sanz, Green Chem. 2013, 15,
9991005; c) N. García, R. Rubio-Presa, P. García-García, M. A.
Fernández-Rodríguez, M. R. Pedrosa, F. J. Arnáiz, R. Sanz, Green
Chem. 2016, 18, 23352340; d) R. Rubio-Presa, M. A. Fernández-
Rodríguez, M. R. Pedrosa, F. J. Arnáiz, R. Sanz, Adv. Synth. Catal.
2017, 359, 17521757; e) R. Rubio-Presa, M. R. Pedrosa, M. A.
Fernández-Rodríguez, F. J. Arnáiz, R. Sanz, Org. Lett. 2017, 19,
54705473; f) R. Rubio-Presa, S. Suárez-Pantiga, M. R. Pedrosa, R.
Sanz, Adv. Synth. Catal. 2018, 360, 22162220. For a review, see: g)
R. Hernández-Ruiz, R. Sanz, Synthesis 2018, 50, 40194036.
[20] See Supporting Information for further details.
[4]
[5]
Reviews: a) J. X. Qiao, P. Y. S. Lam, Synthesis 2011, 829856; b) K.
Sanjeeva Rao, T.-S. Wu, Tetrahedron 2012, 68, 77357754.
a) Y. Jiang, D. Ma, in Copper⁷ Mediated Cross⁷ Coupling Reactions
(Eds.: G. Evano, N. Blanchard), John Wiley & Sons, Inc., 2014, pp.
340; b) S. Bhunia, G. G. Pawar, S. V. Kumar, Y. Jiang, D. Ma, Angew.
Chem. Int. Ed. 2017, 56, 1613616179; Angew. Chem. 2017, 129,
1631316327.
[6]
[7]
For a review, see: H. Alinezhad, H. Yavari, F. Salehian, Curr. Org.
Chem. 2015, 19, 10211049.
a) Y. Yu, J. Srogl, L. S. Liebeskind, Org. Lett. 2004, 6, 26312634; b) V.
Dhayalan, C. Sämann, P. Knochel, Chem. Commun. 2015, 51,
32393242; c) S. Roscales, A. G. Csákÿ, Org. Lett. 2018, 20,
16671671.
[8]
[9]
a) P. Starkov, T. F. Jamison, I. Marek, Chem. Eur. J. 2015, 21,
52785300; b) T. V. Nykaza, A. Ramirez, T. S. Harrison, M. R. Luzung,
A. T. Radosevich, J. Am. Chem. Soc. 2018, 140, 31033113.
For selected examples, see: a) C. Zhu, G. Li, D. H. Ess, J. R. Falck, L.
Kuerti, J. Am. Chem. Soc. 2012, 134, 1825318256; b) N. Matsuda, K.
Hirano, T. Satoh, M. Miura, Angew. Chem. Int. Ed. 2012, 51,
36423645; Angew. Chem. 2012, 124, 37023705; c) M. Mailig, R. P.
Rucker, G. Lalic, Chem. Commun. 2015, 51, 1104811051; d) H.-B.
Sun, L. Gong, Y.-B. Tian, J.-G. Wu, X. Zhang, J. Liu, Z. Fu, D. Niu,
Angew. Chem. Int. Ed. 2018, 57, 94569460; Angew. Chem. 2018, 130,
96009604.
[21] This tendency resembles that observed by Radosevich (ref. [18]) in
which more efficient couplings were obtained in the reactions of
electron-deficient nitroarenes with electron-rich arylboronic acids.
[22] See, for instance: H. Gögelein, D. Dahlem, H. C. Englert, H. J. Lang,
FEBS Lett. 1990, 268, 7982.
[23] T. Stemmler, F. A. Westerhaus, A.-E. Surkus, M.-M. Pohl, K. Junge, M.
Beller, Green Chem. 2014, 16, 45354540.
[24] R. Sanz, J. Escribano, R. Aguado, M. R. Pedrosa, F. J. Arnáiz,
Synthesis 2004, 16291632.
[25] a) R. Sanz, J. Escribano, Y. Fernández, M. R. Pedrosa, F. J. Arnáiz,
Synlett 2005, 13891392; b) R. Aguado, J. Escribano, M. R. Pedrosa,
A. De Cian, R. Sanz, F. J. Arnáiz, Polyhedron 2007, 26, 38423848.
[26] L. S. Liebeskind, K. B. Sharpless, R. D. Wilson, J. A. Ibers, J. Am.
Chem. Soc. 1978, 100, 70617063.
[27] The results with nitroalkanes would suggest that no free nitroso is
generated, because a primary or secondary nitroso alkane would
rapidly suffer tautomerization to oxime making inaccessible the
subsequent CN amination. However, nitrosoarene compounds
efficiently afforded the corresponding diarylamines when subjected to
the standard reaction. So, regarding the reaction with nitroaromatics,
the participation of free nitrosoarenes is feasible. See Supporting
Information for further details.
[10] For amide syntheses from nitroarenes, see: a) C. W. Cheung, M. L.
Ploeger, X. Hu, Nat. Commun. 2017, 8, 14878; b) C. W. Cheung, M. L.
Ploeger, X. Hu, ACS Catal. 2017, 7, 70927096; c) C. W. Cheung, J.-A.
Ma, X. Hu, J. Am. Chem. Soc. 2018, 140, 67896792.
[11] Cadogan reaction: a) J. I. G. Cadogan, M. Cameron-Wood, R. K.
Mackie, R. J. G. Searle, J. Chem. Soc. 1965, 48314837; b) R. Sanz, J.
Escribano, M. R. Pedrosa, R. Aguado, F. J. Arnáiz, Adv. Synth. Catal.
2007, 349, 713718; c) H. Gao, Q.-L. Xu, M. Yousufuddin, D. H. Ess, L.
Kürti, Angew. Chem. Int. Ed. 2014, 53, 27012705; Angew. Chem.
2014, 126, 27392743; d) S. Tong, Z. Xu, M. Mamboury, Q. Wang, J.
Zhu, Angew. Chem. Int. Ed. 2015, 54, 1180911812; Angew. Chem.
2015, 127, 1197511978; e) K. Yang, F. Zhou, Z. Kuang, G. Gao, T. G.
Driver, Q. Song, Org. Lett. 2016, 18, 40884091. Bartoli reaction: f) G.
Bartoli, R. Dalpozzo, M. Nardi, Chem. Soc. Rev. 2014, 43, 47284750;
[12] a) J. Gui, C.-M. Pan, Y. Jin, T. Qin, J. C. Lo, B. J. Lee, S. H. Spergel, M.
E. Mertzman, W. J. Pitts, T. E. La Cruz, M. A. Schmidt, N. Darvatkar, S.
This article is protected by copyright. All rights reserved.