10.1002/anie.201903365
Angewandte Chemie International Edition
COMMUNICATION
Table 1. Scope of the Rh-catalyzed PKR of 1,7-diphenyl-hepta-3,4-diene (1)
with different 1,3-diketones and PKR of different internal allenes with acetyl
acetone (2).
Acknowledgements
This
work
was
supported
by
the
Deutsche
O
O
[Rh(COD)Cl]2 5 mol%
(R)-L1 10 mol%
TFA 50 mol%
O
O
Forschungsgemeinschaft (DFG) and the Fonds der Chemischen
Industrie. Jan Klauser (University of Freiburg) is acknowledged
for technical assistance. We thank Dr. Manfred Keller for
extensive NMR experimentations and Joshua Emmerich for
challenging HPLC separations.
R3
R3
O
O
R3
R3
R1
R2
•
+
+
R1
R3
R3
DCM (0.2 M)
RT, 16 h
R1
R2
4-25
rac
2
R2
(1.0 equiv.)
(2.0 equiv.)
O
O
O
O
O
O
O
O
Et
Et
Me
Ph
Me
tBu
tBu
iPr
iPr
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Conflict of interest
4
6
7
8
99% yield,[a]
E/Z 55:45,[b] 98/98% ee[c]
78% yield,
E/Z 44:56, 99/98% ee
53% yield,
E/Z 21:79, 95/93% ee
24% yield,
E/Z <5:95, 52% ee
O
O
O
O
The authors declare no conflict of interest.
O
O
Ph
Ph
Ph
F3C
CF3
Ph
MeO
OMe
Keywords: Parallel Kinetic Resolution • Rhodium • Asymmetric
Ph
Ph
Ph
Ph
Catalysis • 1,3-Diketones • Allenes
9
10
11
60% yield,
E/Z 16:84, 86/90% ee
70% yield,
E/Z 27:73, 98/95% ee
42% yield,
E/Z 12:88, 97/88% ee
O
O
O
O
O
O
[1]
[2]
For recent reviews, see: a) P. Koschker, B. Breit, Acc. Chem. Res.
2016, 49, 1524-1536; b) A. M. Haydl, B. Breit, T. Liang, M. J. Krische,
Angew. Chem. Int. Ed. 2017, 56, 11312-11325; Angew. Chem. 2017,
129, 11466-11480.
F
F
Cl
Cl
Ph
Br
Br
Ph
Ph
Ph
Ph
Ph
12
68% yield,
E/Z 19:81, 94/98% ee
13
62% yield,
E/Z 15:85, 91/95% ee
14
49% yield,
E/Z 9:91, n.d./95% ee
For recent publications of our group, see: a) J. P. Schmidt, B. Breit,
Chem. Sci. 2019, 10, 3074-3079; b) J. Zheng, B. Breit, Angew. Chem.
2019, 131, 3430-3435; Angew. Chem. Int. Ed. 2018, 58, 3392-3397; c)
L. J. Hilpert, S. V. Sieger, A. M. Haydl, B. Breit, Angew. Chem. 2019,
131, 3416-3419; Angew. Chem. Int. Ed. 2018, 58, 3378-3381; d) C. P.
Grugel, B. Breit, Chem. Eur. J. 2018, 24 , 15223-15226; e) P. Spreider,
B. Breit, Org. Lett. 2018, 20, 3286-3290.
O
O
O
O
O
O
Me
O
O
Me
Me
Me
Ph
Me
S
S
Me
Ph
Ph
Ph
Ph
Ph
Ph
Ph
15
60% yield,
E/Z 21:79, 92/95% ee
16
17
61% yield,
E/Z 35:65, 91/96% ee
18
62% yield,
E/Z 24:76, 88/80% ee
52% yield,
E/Z 20:80, 91/98% ee
[3]
For examples on C-C-bond formation, see: a) C. Li, B. Breit, J. Am.
Chem. Soc. 2014, 136, 862-865; b) T. M. Beck, B. Breit, Org. Lett. 2016,
18, 124-127; c) F. A. Cruz, Z. Chen, S. I. Kurtoic, V. M. Dong, Chem.
Commun. 2016, 52, 5836-5839; d) C. Li, C. P. Grugel, B. Breit, Chem.
Commun. 2016, 52, 5840-5843; e) T. M. Beck, B. Breit, Eur. J. Org.
Chem. 2016, 93, 5839-5844; f) F. A. Cruz, V. M. Dong, J. Am. Chem.
Soc. 2017, 139, 1029-1032; g) F. A. Cruz, Y. Zhu, Q. D. Tercenio, Z.
Shen, V. M. Dong, J. Am. Chem. Soc. 2017, 139, 10641-10644; h) P. P.
Bora, G.-J. Sun, W.-F. Zheng, Q. Kang Chin. J. Chem. 2018, 36, 20-24.
B. Trost, Science 1991, 254, 1471-1477.
O
O
O
O
O
O
Me
Me
Me
Me
Me
Ph
Me
Ph
Ph
Ph MeO
OMe
4
19
20
99% yield,[a]
98% yield,
98% yield,
E/Z 50:50, 98/98% ee
E/Z 55:45,[b] 98/98% ee[c]
E/Z 52:48, 98/97% ee
O
O
O
O
O
O
O
O
O
O
Me
Me
[4]
[5]
Me
Me
Me
Me
Me
Me
Bn
Me
Me
Me
For selected reviews on transition-metal-catalyzed allylic substitution,
see: a) B.M.Trost, D. L. VanVranken, Chem. Rev. 1996, 96, 395-422;
b) B.M.Trost, M. L. Crawley, Chem. Rev. 2003, 103, 2921-2944; c)
J.Tsuji, I. Minami, Acc. Chem. Res. 1987, 20, 140-145; d) Z.Lu, S. Ma,
Angew. Chem. Int. Ed. 2007, 47, 258-297; Angew. Chem. 2007, 120,
264-303; e) G.Helmchen, A. Dahnz, P. Dubon, M. Schelwies, R.
Weihofen, Chem. Commun. 2007, 675-691.
H23C11
Me
H11C5
13
C11H23
C5H11
Cy
Me
Me
21
22
94% yield,
23
86% yield,
24
91% yield,
25
53% yield,
95% yield,
E/Z 56:44, 79/71% ee E/Z 50:50, 95/93% ee E/Z 43:57, 96/97% ee E/Z 44:56, 98/97% ee E/Z 9:91, n.d./97% ee
[a] Reported yields are of isolated 1,3-diketones. For substrates with steric
hindrance the lower yields were accompanied by full conversion of allene 1
and detection of the E-TFA-ester 3 in the crude 1H-NMR. [b] E/Z-ratio was
determined by crude 1H-NMR. [c] ee was determined by chiral HPLC; X/Y %
ee (X: E-isomer, Y: Z-isomer).
[6]
[7]
For selected examples of Pd-catalyzed allylic alkylation to achieve
branched products, see: a) B. M. Trost, S. Malhotra, W. H. Chan, J. Am.
Chem. Soc. 2011, 133, 7328-7331; b) J.-P. Chen, Q. Peng, B.-L. Lei,
X.-L. Hou, Y.-D. Wu, J. Am. Chem. Soc. 2011, 133, 14180-14183; c) J.-
P. Chen, C.-H. Ding, W. Liu, X.-L. Hou, L.-X. Dai, J. Am. Chem. Soc.
2010, 132, 15493-15495; d) P. Zhang, L. A. Brozek, J. P. Morken, J.
Am. Chem. Soc. 2010, 132, 10686-10688.
To conclude, we herein described a rare case of a parallel
kinetic resolution in the course of a rhodium-catalyzed addition
of 1,3-diketones to racemic allenes. Mechanistic investigations
revealed that allylic TFA-esters are passed as intermediates. In
this first step alkene geometry is controlled while the second
step occurs as an allylic substitution and controls the
enantioselectivity in this process while preserving alkene
geometry.
For selected examples of Ir-catalyzed allylic alkylation to achieve
branched products, see: a) W. Chen, J. F. Hartwig, J. Am. Chem. Soc.
2013, 135, 2068-2071; b) J. F. Hartwig, L. M. Stanley, Acc. Chem. Res.
2010, 43, 1461-1475; c) S. Krautwald, D. Sarlah, M. A. Schafroth, E. M.
Carreira, Science 2013, 340, 1065-1068; d) J. Y. Hamilton, D. Sarlah, E.
M. Carreira, Angew. Chem. Int. Ed. 2013, 52, 7532-7535; Angew.
Chem. 2013, 125, 7680-7683; e) G. Lipowsky, N. Miller, G. Helmchen,
Angew. Chem. Int. Ed. 2004, 43, 4595-4597; Angew. Chem. 2004, 116,
4695-4698.
[8]
For selected examples of Rh-catalyzed allylic alkylation to achieve
branched products, see: a) J. Tsuji, I. Minami, I. Shimizu, Tetrahedron
This article is protected by copyright. All rights reserved.