Journal of the American Chemical Society
Article
For the structure for MnIII(OPPh3)(TBP8Cz) (1) six of the eight
tert-butylphenyl (TBP) groups are found to be disordered over two
orientations (only the t-butyl part is disordered). The occupancy
factors of the six major components of the disorder refine to 0.53(2),
0.69(4), 0.768(7), 0.52(2), 0.695(6) and 0.57(3). The crystal lattice
contains some amount of solvent molecules (CH3CN and CH2Cl2).
The occupancy factors of the lattice CH3CN solvent molecules were
refined using free variables, and there are ca. 3.76 CH3CN molecules
per Mn complex. Some electron density in the asymmetric unit (i.e., a
disordered solvent CH2Cl2 molecule with at least 3 different
orientations with partial occupancies) has been taken out in the final
refinement (SQUEEZE73 details are provided in the CIF file).
Data for MnIII(OPPh3)(TBP8Cz) (1) follow: Fw = 1843.47,
irregular shaped crystal, 0.43 × 0.18 × 0.09 mm3, monoclinic, P21/c
(no. 14), a = 17.17627(19), b = 33.6006(3), c = 19.6140(2) Å, β =
101.1080(11)°, V = 11107.8(2) Å3, Z = 4, Dx = 1.102 g cm−3, μ =
1.500 mm−1, abs. corr. range: 0.640−0.882. A total of 82335 reflections
were measured up to a resolution of (sin θ/λ)max = 0.62 Å−1. Then,
21779 reflections were unique (Rint = 0.0392), of which 18304 were
observed [I > 2σ(I)]. A total of 1527 parameters were refined using
855 restraints. R1/wR2 [I > 2σ(I)]: 0.0658/0.1749. R1/wR2 [all refl.]:
0.0768/0.1841. S = 1.043. Residual electron density found between
−0.57 and 1.06 e Å−3.
ACKNOWLEDGMENTS
■
The authors gratefully acknowledge research support of this
work by the NIH (Grant GM101153 to D.P.G.). We also thank
Prof. Kenneth D. Karlin (JHU) for instrumentation (stopped-
flow UV−vis) use.
REFERENCES
■
(1) Sono, M.; Roach, M. P.; Coulter, E. D.; Dawson, J. H. Chem. Rev.
1996, 96, 2841.
(2) Meunier, B.; de Visser, S. P.; Shaik, S. Chem. Rev. 2004, 104,
3947.
(3) Denisov, I. G.; Makris, T. M.; Sligar, S. G.; Schlichting, I. Chem.
Rev. 2005, 105, 2253.
(4) Gunter, M. J.; Turner, P. Coord. Chem. Rev. 1991, 108, 115.
(5) Watanabe, Y.; Fujii, H. In Metal-Oxo and Metal-Peroxo Species in
Catalytic Oxidations; Meunier, B., Ed.; Springer: Berlin; New York,
2000; p 62.
(6) McLain, J. L.; Lee, J.; Groves, J. T. In Biomimetic Oxidations
Catalyzed by Transition Metal Complexes; Meunier, B., Ed.; Imperial
College Press: London, 2000; p 91.
(7) Liu, H.-Y.; Mahmood, M. H. R.; Qiu, S.-X.; Chang, C. K. Coord.
Chem. Rev. 2013, 257, 1306.
The asymmetric unit for MnIII(OP(o-tolyl)3)(TBP8Cz) (2)
contains two crystallographically independent Mn complexes 2a and
2b and some amount of lattice solvent molecules (CH2Cl2, CH3CN).
Six of the eight tert-butyl groups of 2a are disordered over two
orientations, and the six occupancy factors of the major components of
the disorder refine to 0.517(9), 0.779(8), 0.680(8), 0.60(2),
0.697(10), 0.816(8). The OP(o-tolyl)3 coordinated to 2b is disordered
over two orientations, and the occupancy factor of the major
component of the disorder refines to 0.694(4). Two ordered lattice
CH3CN and one disordered (over two orientations) CH2Cl2 solvent
molecules were found in the asymmetric unit. The occupancy factors
were refined freely and their final values are 0.815(10), 0.956(9),
0.496(5) and 0.285(5). Other solvent molecules (most likely CH3CN
and CH2Cl2) were found to be very disordered, and their contribution
has been taken out in the final refinement using the SQUEEZE
procedure73 (SQUEEZE details are provided in the CIF file).
Data for MnIII(OP(o-tolyl)3)(TBP8Cz) (2) follow: Fw = 1800.72,
(8) Gross, Z. J. Biol. Inorg. Chem. 2001, 6, 733.
(9) McGown, A. J.; Badiei, Y. M.; Leeladee, P.; Prokop, K. A.;
DeBeer, S.; Goldberg, D. P. In The Handbook of Porphyrin Science;
Kadish, K. M., Smith, K. M., Guilard, R., Eds.; World Scientific: NJ,
2011; Vol. 14, p 525.
(10) Weiss, R.; Bulach, V.; Gold, A.; Terner, J.; Trautwein, A. J. Biol.
Inorg. Chem. 2001, 6, 831.
(11) Evangelio, E.; Ruiz-Molina, D. C. R. Chim. 2008, 11, 1137.
(12) Jung, C. Biochim. Biophys. Acta 2011, 1814, 46.
(13) Poulos, T. L. Chem. Rev. 2014, 114, 3919.
(14) Rittle, J.; Green, M. T. Science 2010, 330, 933.
(15) Rittle, J.; Younker, J. M.; Green, M. T. Inorg. Chem. 2010, 49,
3610.
(16) Groves, J. T.; Quinn, R.; McMurry, T. J.; Lang, G.; Boso, B. J.
Chem. Soc., Chem. Commun. 1984, 1455.
(17) Pan, Z.; Harischandra, D. N.; Newcomb, M. J. Inorg. Biochem.
2009, 103, 174.
(18) Ikezaki, A.; Takahashi, M.; Nakamura, M. Chem. Commun. 2013,
thick dark brown-black lath, 0.39 × 0.17 × 0.14 mm3, triclinic, P1 (no.
̅
2), a = 22.6324(3), b = 23.4125(3), c = 23.4458(4) Å, α =
118.4068(15), β = 98.4848(13), γ = 93.6179(11)°, V = 10680.4(3) Å3,
Z = 4, Dx = 1.120 g cm−3, μ = 1.716 mm−1, Tmin−Tmax: 0.653−0.865. A
total of 139649 reflections were measured up to a resolution of (sin θ/
λ)max = 0.62 Å−1. Then, 41851 reflections were unique (Rint = 0.0292),
of which 34261 were observed [I > 2σ(I)]. A total of 2837 parameters
were refined using 1684 restraints. R1/wR2 [I > 2σ(I)]: 0.0861/
0.2439. R1/wR2 [all refl.]: 0.0996/0.2572. S = 1.005. Residual electron
density found between −0.84 and 1.97 e Å−3.
49, 3098.
(19) Spreer, L. O.; Maliyackel, A. C.; Holbrook, S.; Otvos, J. W.;
Calvin, M. J. Am. Chem. Soc. 1986, 108, 1949.
(20) Cong, Z.; Kurahashi, T.; Fujii, H. J. Am. Chem. Soc. 2012, 134,
4469.
(21) Kurahashi, T.; Kikuchi, A.; Tosha, T.; Shiro, Y.; Kitagawa, T.;
Fujii, H. Inorg. Chem. 2008, 47, 1674.
(22) Leeladee, P.; Baglia, R. A.; Prokop, K. A.; Latifi, R.; de Visser, S.
P.; Goldberg, D. P. J. Am. Chem. Soc. 2012, 134, 10397.
(23) Baglia, R. A.; Durr, M.; Ivanovic-
Inorg. Chem. 2014, 53, 5893.
(24) Park, Y. J.; Ziller, J. W.; Borovik, A. S. J. Am. Chem. Soc. 2011,
133, 9258.
́
Burmazovic,
́
I.; Goldberg, D. P.
̈
ASSOCIATED CONTENT
■
S
* Supporting Information
UV−vis kinetics studies, X-ray crystal structure of 2a (Figure
S3), crystallographic information files (CIF for 1 and 2), EPR,
31P{1H} and 1H NMR, and MS data, and redox titration
studies. The Supporting Information is available free of charge
(25) Tsui, E. Y.; Tran, R.; Yano, J.; Agapie, T. Nat. Chem. 2013, 5,
293.
(26) Miller, C. G.; Gordon-Wylie, S. W.; Horwitz, C. P.; Strazisar, S.
A.; Peraino, D. K.; Clark, G. R.; Weintraub, S. T.; Collins, T. J. J. Am.
Chem. Soc. 1998, 120, 11540.
(27) Du, H.; Lo, P.-K.; Hu, Z.; Liang, H.; Lau, K.-C.; Wang, Y.-N.;
Lam, W. W. Y.; Lau, T.-C. Chem. Commun. 2011, 47, 7143.
(28) Lam, W. W. Y.; Yiu, S.-M.; Lee, J. M. N.; Yau, S. K. Y.; Kwong,
H.-K.; Lau, T.-C.; Liu, D.; Lin, Z. J. Am. Chem. Soc. 2006, 128, 2851.
(29) Dong, L.; Wang, Y.; Lv, Y.; Chen, Z.; Mei, F.; Xiong, H.; Yin, G.
Inorg. Chem. 2013, 52, 5418.
(30) Chen, J.; Lee, Y.-M.; Davis, K. M.; Wu, X.; Seo, M. S.; Cho, K.-
B.; Yoon, H.; Park, Y. J.; Fukuzumi, S.; Pushkar, Y. N.; Nam, W. J. Am.
Chem. Soc. 2013, 135, 6388.
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
I
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX