10.1002/anie.201900199
Angewandte Chemie International Edition
COMMUNICATION
Tomakinian, R. Guillot, C. Kouklovsky, G. Vincent, Chem. Comm. 2016,
52, 5443–5446.
proceeded smoothly to provide the desired benzofuroindoline 19
as the sole product. Attempts to introduce the two carbon-unit for
[7]
[8]
K. Douki, J. Shimokawa, M. Kitamura, Org. Biomol. Chem. 2019, 17,
1727–1730.
indolization
by
Sonogashira
coupling
of
19
with
trimethylsilylacetylene failed. To our delight, Suzuki-Miyaura
coupling of 19 with potassium vinyltrifluoroborate afforded
nitrostyrene 22 in 93% yield.[22] Cadogan reductive cyclization of
For the synthesis of diazoamides, see: a) A. W. G. Burgett, Q. Li, Q. Wei,
P. G. Harran, Angew. Chem. Int. Ed. 2003, 42, 4961–4966; Angew.
Chem. 2003, 115, 5111–5116; b) H. Ding, P. L. DeRoy, C. Perreault, A.
Larivée, A. Siddiqui, C. G. Caldwell, S. Harran, P. G. Harran, Angew.
Chem. Int. Ed. 2015, 54, 4818–4822; Angew. Chem. 2015, 127, 4900–
4904.
o
22 with P(OEt)3 at 210 C successfully gave indole 23 in 56%
yield.[23] Attempts to direct reduction of carbamate group to Me
and removal of Bz in 23 with LiAlH4 led to the decomposition of
o
[9]
For the synthesis of haplophytine, see: a) K. C. Nicolaou, U. Majumder,
S. P. Roche, D. Y.-K. Chen, Angew. Chem. Int. Ed. 2007, 46, 4715–
4718; Angew. Chem. 2007, 119, 4799–4802; b) K. C. Nicolaou, S. M.
Dalby, S. Li, T. Suzuki, D. Y.-K. Chen, Angew. Chem. Int. Ed. 2009, 48,
7616–7620; Angew. Chem. 2009, 121, 7752–7756; c) W. Tian, L. R.
Chennamaneni, T. Suzuki, D. Y.-K. Chen, Eur. J. Org. Chem. 2011,
1027−1031.
23 at room temperature or 0 C, but no reaction occurred at -40
oC. After considerable experimentation, we were pleased to find
that Red-Al was the best choice and the desired product 24 was
obtained in 68% yield.[24] Finally, reaction of 24 with N,N-
dimethylmethylene iminium chloride in the presence of AcOH
provided 1 in 68% yield.[25] The physical data of our synthesized
phalarine (1) are identical to those reported in the literature.[1,4c]
Thus, we achieved the total synthesis of 1 in only eight steps
(longest linear sequence) with 5.5% overall yield from
commercially available tryptamine.
[10] For the synthesis of azonazine, see: a) J.-C. Zhao, S.-M. Yu, Y. Liu, Z.-
J. Yao, Org. Lett. 2013, 15, 4300–4303; b) J.-C. Zhao, S.-M. Yu, H.-B.
Qiu, Z.-J. Yao, Tetrahedron 2014, 70, 3197–3210.
[11] D. Lachkar, N. Denizot, G. Bernadat, K. Ahamada, M. A. Beniddir, V.
Dumontet, J. F. Gallard, R. Guillot, K. Leblanc, O. N'Nang E, V. Turpin,
C. Kouklovsky, E. Poupon, L. Evanno, G. Vincent, Nat. Chem. 2017, 9,
793–798.
In summary, we have addressed the challenge of the
regioselectivity of the direct oxidative coupling reaction between
indoles and phenols to construct the benzofuro[3,2-b]indolines.
The resulting method enabled us to accomplish the total synthesis
of phalarine in only eight steps from commercially available
tryptamine. This synthesis represents the shortest pathway for the
total synthesis of phalarine to date.
[12] N. Denizot, A. Pouilhès, M. Cucca, R. Beaud, R. Guillot, C. Kouklovsky,
G. Vincent, Org. Lett. 2014, 16, 5752–5755.
[13] For a two-step strategy, see: a) R. Beaud, R. Guillot, C. Kouklovsky, G.
Vincent, Angew. Chem. Int. Ed. 2012, 51, 12546–12550; Angew. Chem.
2012, 124, 12714–12718; b) R. Beaud, T. Tomakinian, N. Denizot, A.
Pouilhès, C. Kouklovsky, G. Vincent, Synlett 2015, 432–440; c) A. S.
Marques, V. Coeffard, I. Chataigner, G. Vincent, X. Moreau, Org. Lett.
2016, 18, 5296–5299.
[14] For a related strategy, see: a) L. Liao, C. Shu, M. Zhang, Y. Liao, X. Hu,
Y. Zhang, Z. Wu, W. Yuan, X.-M. Zhang, Angew. Chem. Int. Ed. 2014,
53, 10471–10475; Angew. Chem. 2014, 126, 10639–10643; b) C. Shu,
L.-H. Liao, Y.-J. Liao, X.-Y. Hu, Y.-H. Zhang, W.-C. Yuan, X.-M. Zhang,
Eur. J. Org. Chem. 2014, 4467–4471; c) Q.-J. Liu, J. Zhu, X.-Y. Song, L.
Wang, S. R. Wang, Y. Tang, Angew. Chem. Int. Ed. 2018, 57, 3810–
3814; Angew. Chem. 2018, 130, 3872–3876.
Acknowledgements
This research was supported by the National Natural Science
Foundation of China (Nos. 21871013 and 21572008).
Keywords: alkaloids • total synthesis • oxidative coupling •
regioselectivity • natural products
[15] T. Tomakinian, R. Guillot, C. Kouklovsky, G. Vincent, Angew. Chem. Int.
Ed. 2014, 53, 11881–11885; Angew. Chem. 2014, 126, 12075–12079.
[16] K. Liu, S. Tang, P. Huang, A. Lei, Nat. Commun. 2017, 8, 775–782.
[17] C. G. Hartung, A. Fecher, B. Chapell, V. Snieckus, Org. Lett. 2003, 5,
1899–1902.
[1]
[2]
N. Anderton, P. A. Cockrum, S. M. Colegate, J. A. Edgar, K. Flower, D.
Gardner, R. I. Willing, Phytochemistry 1999, 51, 153–157.
a) Isolation and original structural proposal, see: N. Lindquist, W. Fenical,
G. D. Van Duyne, J. Clardy, J. Am. Chem. Soc. 1991, 113, 2303–2304;
b) Structure revision, see: J. Li, A. W. G. Burgett, L. Esser, C. Amezcua,
P. G. Harran, Angew. Chem. Int. Ed. 2001, 40, 4770–4773; Angew.
Chem. 2001, 113, 4906–4909.
[18] For recent reviews on PIDA in organic synthesis, see: a) T. Dohi, M. Ito,
N. Yamaoka, K. Morimoto, H. Fujioka, Y. Kita, Tetrahedron 2009, 65,
10797–10815; b) A. Yoshimura, V. V. Zhdankin, Chem. Rev. 2016, 116,
3328–3435; For hypervalent iodine-mediated phenol dearomatization in
natural product synthesis, see: c) L. Pouységu, D. Deffieux, S. Quideau,
Tetrahedron 2010, 66, 2235–2261; d) L. F. Silva, B. Olofsson, Nat. Prod.
Rep. 2011, 28, 1722–1754.
[3]
[4]
Q. X. Wu, M. S. Crews, M. Draskovic, J. Sohn, T. A. Johnson, K. Tenney,
F. A. Valeriote, X. J. Yao, L. F. Bjeldanes, P. Crews, Org. Lett. 2010, 12,
4458–4461.
[19] I. Chataigner, C. Panel, H. Gerard, S. R. Piettre, Chem. Commun. 2007,
3288–3290.
a) C. Chan, C. M. Li, F. Zhang, S. J. Danishefsky, Tetrahedron Lett. 2006,
47, 4839–4841; b) C. M. Li, C. Chan, A. C. Heimann, S. J. Danishefsky,
Angew. Chem. Int. Ed. 2007, 46, 1444–1447; Angew. Chem. 2007, 119,
1466–1469; c) C. M. Li, C. Chan, A. C. Heimann, S. J. Danishefsky,
Angew. Chem. Int. Ed. 2007, 46, 1448–1450; Angew. Chem. 2007, 119,
1470–1472; d) J. D. Trzupek, D. Lee, B. M. Crowley, V. M. Marathias, S.
J. Danishefsky, J. Am. Chem. Soc. 2010, 132, 8506–8512; e) J. D.
Trzupek, C. M. Li, C. Chan, B. M. Crowley, A. C. Heimann, S. J.
Danishefsky, Pure Appl. Chem. 2010, 82, 1735–1748.
[20] CCDC 1882480 (9ac) contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre.
[21] K. S. Lim, H. Lee, S. E. Kim, T.-H. Ha, J. Ann, K. Son, S. Choi, W. Sun,
L. V. Pearce, I. A. DeAndrea-Lazarus, P. M. Blumberg, J. Lee, Eur. J.
Med. Chem. 2013, 68, 233−243.
[22] F. Kerins, D. F. O’Shea, J. Org. Chem. 2002, 67, 4968–4971.
[23] a) J. I. G. Cadogan, Synthesis 1969, 11–17; b) S. Llona-Minguez, M.
Desroses, A. Ghassemian, S. A. Jacques, L. Eriksson, R. Isacksson, T.
Koolmeister, P. Stenmark, M. Scobie, T. Helleday, Chem. Eur. J. 2015,
21, 7394–7398.
[5]
[6]
H. Ding, D. Y.-K. Chen, Angew. Chem. Int. Ed. 2011, 50, 676–679;
Angew. Chem. 2011, 123, 702–705.
T. Tomakinian, H. A. Hamdan, N. Denizot, R. Guillot, J.-P. Baltaze, C.
Kouklovsky, G. Vincent, Eur. J. Org. Chem. 2017, 2757−2763; b) T.
This article is protected by copyright. All rights reserved.