Y. H. Jung et al.
FULL PAPER
(11 mL) were added 2,6-lutidine (0.44 mL, 1.842 mmol) and
TBSOTf (0.790 mL, 1.675 mmol) at 0 °C. The reaction mixture was
stirred at 0 °C for 5 h and then was quenched with a solution of
aqueous saturated NaHCO3 (10 mL). The aqueous layer was ex-
tracted with CH2Cl2 (20 mL). The combined organic layers were
dried with MgSO4 and concentrated in vacuo. The residue was
purified by flash column chromatography (CH2Cl2/CH3OH/
NH4OH, 90:10:0.15) to afford 15 (242 mg, 0.762 mmol, 91% yield)
as a colorless oil; Rf = 0.42 (CH2Cl2/CH3OH/NH4OH, 90:10:0.15).
Supporting Information (see footnote on the first page of this arti-
1
cle): H and 13C NMR spectra for all compounds.
Acknowledgments
This work was supported by the Postdoctoral Research Program
of Sungkyunkwan University (2012) and the National Research
Foundation of Korea (NRF-2012-002506) and funded by the Min-
istry of Education, Science, and Technology, Korea.
[α]2D7 = +185.9 (c = 0.03, CHCl ). IR (neat): ν = 2926, 2854, 1739,
˜
3
1464, 1364, 1253, 1099, 969, 926, 837, 776, 747 cm–1. 1H NMR
(500 MHz, CDCl3): δ = 0.04 (s, 3 H), 0.07 (s, 3 H), 0.88 (s, 9 H),
1.45–1.50 (m, 1 H), 1.74–1.80 (m, 2 H), 2.04–2.08 (m, 2 H), 2.68
(dt, J = 11.8, 2.8 Hz, 1 H), 3.08 (d, J = 11.8 Hz, 1 H), 3.13 (t, J =
7.8 Hz, 1 H), 3.44–3.46 (m, 1 H), 6.31 (dd, J = 16.0, 7.1 Hz, 1 H),
6.60 (d, J = 16.0 Hz, 1 H), 7.24–7.40 (m, 5 H) ppm. 13C NMR
(125 MHz, CDCl3): δ = –4.3, –4.1, 18.2, 25.3, 26.0, 26.0, 29.9, 34.8,
45.9, 66.1, 72.9, 126.4, 127.5, 128.7, 131.7, 137.3 ppm. HRMS (EI):
calcd. for C19H31NOSi [M]+ 317.2175; found 317.2177.
[1] A. A. Watson, G. W. J. Fleet, N. Asano, R. J. Molyneux, R. J.
Nash, Phytochemistry 2001, 56, 265.
[2] For selected reviews, see: a) E. B. de Melo, A. da Sil-
veria Gomes, I. Carvalho, Tetrahedron 2006, 62, 10277; b) S.
Gerber-Lemaire, L. Juillerat-Jeanneret, Mini-Rev. Med. Chem.
2006, 6, 1043; c) N. Asano, Glycobiology 2003, 13, 93R; d)
V. H. Lillelund, H. H. Jensen, X. F. Liang, M. Bols, Chem. Rev.
2002, 102, 515.
[3] For a selected review, see: J. P. Michael, Nat. Prod. Rep. 2007,
24, 191.
(2S,3R)-Allyl
3-(tert-Butyldimethylsilyloxy)-2-styrylpiperidine-1-
[4] a) F. P. Guengerich, S. J. DiMari, H. P. Broquist, J. Am. Chem.
Soc. 1973, 95, 2055; b) M. J. Schneider, F. S. Ungemach, H. P.
Broquist, T. M. Harris, Tetrahedron 1983, 39, 29.
[5] S. M. Colegate, P. R. Dorling, C. R. Huxtable, Aust. J. Chem.
1979, 32, 2257.
[6] R. J. Molyneux, L. F. James, Science 1982, 216, 190.
[7] M. Hino, O. Nakayama, Y. Tsurumi, K. Adachi, T. Shibata,
H. Terano, M. Kohsaka, H. Aoki, H. Imanaka, J. Antibiot.
1985, 38, 926.
[8] a) A. D. Elbein, R. Solf, P. R. Dorling, K. Vosbeck, Proc. Natl.
Acad. Sci. USA 1981, 78, 7393; b) D. R. Tulsiani, T. M. Harris,
O. Touster, J. Biol. Chem. 1982, 257, 7936.
[9] a) P. E. Goss, C. L. Reid, D. Bailey, J. W. Dennis, Clin. Cancer
Res. 1997, 3, 11077; b) I. Cenci di Bello, G. Fleet, S. K.
Namgoong, K. Tadano, B. Winchester, Biochem. J. 1989, 259,
855.
[10] J. Y. Sun, H. Yang, S. Miao, J. P. Li, S. W. Wang, M. Z. Zhu,
Y. H. Xie, J. B. Wang, Z. Liu, Q. Yang, Phytomedicine 2009,
16, 1070.
[11] a) T. Kino, N. Inamura, K. Nakahara, S. Kiyoto, T. Goto, H.
Terno, M. Kohsaka, H. Aoki, H. Imanaka, J. Antibiot. 1985,
38, 936; b) M. J. Humphries, K. Matsumoto, S. L. White, R. J.
Molyneux, K. Olden, Cancer Res. 1988, 48, 1410.
[12] A. D. Elbein, P. R. Dorling, K. Vosbeck, M. Horisberger, J.
Biol. Chem. 1982, 257, 1573.
[13] For isolation of 2, see: a) L. D. Hohenschutz, E. A. Bell, P. J.
Jewess, D. P. Leworthy, R. J. Pryce, E. Arnold, J. Clardy, Phyto-
chemistry 1981, 20, 811; for biologial activity of 2, see: b) R. A.
Gruters, J. J. Neefjes, M. Tersmette, R. E. Y. de Goede, A. Tulp,
H. G. Huisman, F. Miedema, H. L. Ploegh, Nature 1987, 330,
74.
carboxylate (17): To a stirred solution of 15 (51 mg, 0.161 mmol)
in anhydrous CH2Cl2 (1.1 mL) were added allyl chloroformate
(0.05 mL, 0.481 mmol) and sodium carbonate (426 mg,
0.402 mmol) at room temperature. The reaction mixture was stirred
at room temperature for 4 h and then was quenched with a solution
of saturated aqueous NH4Cl (3 mL). The resulting mixture was
then diluted with CH2Cl2 (5 mL). The mixture was washed with
H2O, dried with MgSO4, and concentrated in vacuo. The residue
was purified by flash column chromatography (n-hexanes/EtOAc,
20:1) to afford 17 (53.8 mg, 0.134 mmol, 83% yield) as a colorless
oil; Rf = 0.41 (n-hexanes/EtOAc, 10:1). [α]2D7 = +224.6 (c = 0.1,
CHCl ). IR (neat): ν = 2952, 2929, 2856, 1701, 1465, 1417, 1375,
˜
3
1252, 1197, 1129, 1091, 1304, 964, 923, 891, 836 cm–1. 1H NMR
(500 MHz, CDCl3): δ = 0.07 (s, 3 H), 0.09 (s, 3 H), 0.89 (s, 9 H),
1.35 (d, J = 13.1 Hz, 1 H), 1.64–1.69 (m, 2 H), 1.98–2.02 (m, 1 H),
2.98 (dt, J = 13.3, 2.9 Hz, 1 H), 2.95–3.01 (m, 1 H), 4.12 (d, J =
12.6 Hz, 1 H), 4.55–4.65 (m, 2 H), 4.88 (br. s, 1 H), 5.16–5.19 (m,
1 H), 5.27–5.31 (m, 1 H), 5.91–5.96 (m, 1 H), 6.13 (dd, J = 16.1,
5.2 Hz, 1 H), 6.46 (dd, J = 16.1, 1.8 Hz, 1 H), 7.22–7.38 (m, 5
H) ppm. 13C NMR (125 MHz, CDCl3): δ = –4.7, –4.6, 18.3, 19.2,
25.9, 27.8, 39.9, 60.0, 66.1, 68.9, 117.2, 125.4, 126.5, 127.9, 128.8,
132.0, 133.5, 136.8, 156.4 ppm. HRMS (EI): calcd. for
C23H35NO3Si [M]+ 401.2386; found 401.2384.
(2S,3R)-1-Allyl-3-(tert-butyldimethylsilyloxy)-2-styrylpiperidine
(16): To a stirred solution of 17 (38.3 mg, 0.095 mmol) in THF
(2.5 mL) was added tetrakis(triphenylphosphane)palladium
(11 mg, 0.01 mmol) at room temperature. The reaction mixture was
stirred at room temperature for 5 h and then concentrated in vacuo.
The residue was purified by flash chromatography (n-hexanes/
EtOAc, 20:1) to afford 16 (28.9 mg, 0.081 mmol, 85%) as a color-
less oil; Rf = 0.28 (n-hexanes/EtOAc, 20:1). [α]2D7 = +73.6 (c = 1.3,
[14] For reviews about the synthesis of (–)-swainsonine, see: a)
M. D. López, J. Cobo, M. Nogueras, Curr. Org. Chem. 2008,
12, 718; b) S. Pyne, Curr. Org. Synth. 2005, 2, 39; c) A.
El Nemr, Tetrahedron 2000, 56, 8579.
[15] For recent selected examples of the total synthesis of (–)-swain-
sonine, see: a) S. A. Miller, A. R. Chamberlin, J. Am. Chem.
Soc. 1990, 112, 8100; b) W. H. Pearson, K.-C. Lin, Tetrahedron
Lett. 1990, 31, 7571; c) S. H. Kang, G. T. Kim, Tetrahedron
Lett. 1995, 36, 5049; d) W. H. Pearson, E. J. Hembre, J. Org.
Chem. 1996, 61, 7217; e) H. Zhao, S. Hans, X. Cheng, D. R.
Mootoo, J. Org. Chem. 2001, 66, 1761; f) W. H. Pearson, Y.
Ren, J. D. Powers, Heterocycles 2002, 58, 421; g) P. K. Sharma,
R. N. Shah, J. P. Carver, Org. Process Res. Dev. 2008, 12, 831;
h) D. J. Wardrop, E. G. Bowen, Org. Lett. 2011, 13, 2376; i) J.
Louvel, F. Chemla, E. Demont, F. Ferreira, A. Pérez-Luna,
Org. Lett. 2011, 13, 6452.
CHCl ). IR (neat): ν = 3079, 3027, 2929, 2790, 2709, 1739, 1642,
˜
3
1600, 1494, 1463, 1360, 1253, 1101, 969, 916, 836 cm–1. H NMR
1
(500 MHz, CDCl3): δ = –0.14 (s, 3 H), –0.01 (s, 3 H), 0.77 (br. s, 9
H), 1.31–1.39 (m, 1 H), 1.54–1.62 (m, 1 H), 1.68–1.72 (m, 1 H),
1.96–2.01 (m, 2 H), 2.60 (t, J = 8.7 Hz, 1 H), 2.80 (dd, J = 13.9,
8.2 Hz, 1 H), 2.95 (d, J = 11.5 Hz, 1 H), 3.47–3.52 (m, 2 H), 5.08–
5.13 (m, 2 H), 5.81–5.89 (m, 1 H), 6.00 (dd, J = 15.9, 9.0 Hz, 1 H),
6.52 (dd, J = 15.9 Hz, 1 H), 7.18–7.36 (m, 5 H) ppm. 13C NMR
(125 MHz, CDCl3): δ = –4.3, –4.2, 18.1, 23.6, 25.9, 34.3, 41.8, 51.9,
58.8, 72.2, 73.3, 117.9, 126.4, 127.4, 128.7, 129.1, 129.3, 130.8,
134.2, 135.2, 137.2 ppm. HRMS (EI): calcd. for C22H35NOSi
[M]+ 357.2488; found 357.2492.
[16] For recent selected examples of the total synthesis of (–)-swain-
sonine, see: a) N. Ikota, A. Hanaki, Chem. Pharm. Bull. 1990,
4432
www.eurjoc.org
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2013, 4427–4433