D. K. Hutchinson et al. / Bioorg. Med. Chem. Lett. 21 (2011) 1876–1879
1879
2. (a) Krueger, A. C.; Madigan, D. L.; Green, B.; Hutchinson, D. K.; Jiang, W. W.;
Kati, W. M.; Liu, Y.; Maring, C. J.; Masse, S. V.; McDaniel, K. F.; Middleton, T. R.;
Mo, H.; Molla, A.; Montgomery, D. A.; Ng, T. I.; Kempf, D. J. Bioorg. Med. Chem.
Lett. 2007, 17, 2289; (b) Bosse, T. D.; Larson, D. P.; Wagner, R.; Hutchinson, D.
K.; Rockway, T. W.; Kati, W. J.; Liu, Y.; Masse, S.; Middleton, T.; Mo, H.;
Montgomery, D.; Jiang, W.; Koev, G.; Kempf, D. J.; Molla, A. Bioorg. Med. Chem.
Lett. 2008, 18, 586; (c) Hutchinson, D. K.; Rosenberg, T.; Klein, L. L.; Bosse, T. D.;
Larson, D. P.; He, W.; Jiang, W. W.; Kati, W. M.; Kohlbrenner, W. E.; Liu, Y.;
Masse, S. V.; Middleton, T.; Molla, A.; Montgomery, D. A.; Beno, D. W. A.;
Stewart, K. D.; Stoll, V. S.; Kempf, D. J. Bioorg. Med. Chem. Lett. 2008, 18, 3887;
(d) Wagner, R.; Larson, D. P.; Beno, D. W. A.; Bosse, T. D.; Darbyshire, J. F.; Gao,
Y.; Gates, B.; He, W.; Henry, R. F.; Hernandez, L. E.; Hutchinson, D. K.; Jiang, W.
W.; Kati, W. M.; Klein, L. L.; Koev, G.; Kohlbrenner, W.; Krueger, A. C.; Liu, J.; Liu,
Y.; Long, M. A.; Maring, C. J.; Masse, S. V.; Middleton, T.; Montgomery, D. A.;
Pratt, J. K.; Stuart, P.; Molla, A.; Kempf, D. J. J. Med. Chem. 2009, 52, 1659.
3. (a) Pratt, J. K.; Donner, P.; McDaniel, K. F.; Maring, C. J.; Kati, W. M.; Mo, H.;
Middleton, T.; Liu, Y.; Ng, T.; Xie, Q.; Zhang, R.; Montgomery, D.; Molla, A.;
Kempf, D. J.; Kohlbrenner, W. Bioorg. Med. Chem. Lett. 2005, 15, 1577; (b)
Donner, P. L.; Xie, Q.; Pratt, J. K.; Maring, C. J.; Kati, W.; Jiang, W.; Liu, Y.; Koev,
G.; Masse, S.; Montgomery, D.; Molla, A.; Kempf, D. J. Bioorg. Med. Chem. Lett.
2008, 18, 2735.
4. (a) Hendricks, R. T.; Spencer, S. R.; Blake, J. B.; Fell, J. B.; Fischer, J. P.; Stengel, P.
J.; Leveque, V. J. P.; LePogam, S.; Rajyaguru, S.; Najera, I.; Josey, J. A.; Swallow, S.
Bioorg. Med. Chem. Lett. 2009, 19, 410; (b) Blake, J. F.; Fell, J. B.; Fischer, J. P.;
Hendricks, R. T.; J. Robinson, J. E.; Spencer, S. R.; Stengel, P. J. U.S. Patent
Application US 2006/0040927, February 23, 2006.; (c) Vicente, J. V.; Hendricks,
R. T.; Smith, D. B.; Fell, J. B.; Fischer, J.; Spencer, S. R.; Stengel, P. J.; Mohr, P.;
Robinson, J. E.; Blake, J. F.; Hilgenkamp, R. K.; Yee, C.; Adjabeng, G.; Elworthy, T.
R.; Tracy, J.; Chin, E.; Li, J.; Wang, B.; Bamberg, J. T.; Stephanson, R.; Oshiro, C.;
Harris, S. F.; Ghate, M.; Leveque, V.; Najera, I.; Le Pogam, S.; Rajyaguru, S.; Ao-
leong, G.; Alexandrova, L.; Larrabee, S.; Brandl, M.; Briggs, A.; Sukhtankar, S.;
Farrell, R.; Xu, B. Bioorg. Med. Chem. Lett. 2009, 19, 3642.
5. (a) Ellis, D. A.; Blazel, J. K.; Webber, S. E.; Tran, C. V.; Dragovich, P. S.; Sun, Z.;
Ruebesam, F.; McGuire, H. M.; Xiang, A. X.; Zhao, J.; Li, L.-S.; Zhou, Y.; Han, Q.;
Kissinger, C. R.; Showalter, R. E.; Lardy, M.; Shah, A. M.; Tsan, M.; Patel, R.;
LeBrun, L. A.; Kamran, R.; Bartkowski, D. M.; Nolan, T. G.; Norris, D. A.; Sergeeva,
M. V.; Kirkovsky, L. Bioorg. Med. Chem. Lett. 2008, 18, 4628; (b) Dragovich, P. S.;
Blazel, J. K.; Ellis, D. A.; Han, Q.; Kamran, R.; Kissinger, C. R.; LeBrun, L. A.; Li, L.-
S.; Murphy, D. E.; Noble, M.; Patel, R. A.; Ruebesam, F.; Sergeeva, M. V.; Shah, A.
M.; Showalter, R. E.; Tran, C. V.; Tsan, M.; Webber, S. E.; Kirkovsky, L.; Zhou, Y.
Bioorg. Med. Chem. Lett. 2008, 18, 5635; (c) Rubesam, F.; Murphy, D. E.; Tran, C.
V.; Li, L.-S.; Zhou, J.; Dragovich, P. S.; McGuire, H. M.; Ziang, A. X.; Sun, Z.; Ayida,
B. K.; Blazel, J. K.; Kim, S. H.; Zhou, Y.; Han, Q.; Kissinger, C. R.; Webber, S. E.;
Showalter, R. E.; Shah, A. M.; Tsan, M.; Patel, R. A.; Thompson, P. A.; LeBrun, L.
A.; Hou, H. J.; Kamran, R.; Sergeeva, M. V.; Bartkowski, D. M.; Nolan, T. G.;
Norris, D. A.; Khandurina, J.; Brooks, J.; Okamoto, E.; Kirkovsky, L. Bioorg. Med.
Chem. Lett. 2009, 19, 6404; the correct entry code is 3H2L at <http://
methanesulfonyl group on the D-ring would be similar to those
noted in the published crystal structure of benzothiazine 3,4c nicely
rationalizing the potent enzymatic activity of carboxylic acid 16i.
To the extent that this rationale is valid, the quinoline-4-carboxylic
acid moiety of compound 16i could be viewed as a bioisosteric
replacement for the benzothiadiazine moiety.
While compound 16i may mimic the binding site interactions of
comparator benzothiadiazine 2, it must be noted that unsubstitut-
ed compound 16a is only 5–6-fold less active than 16i. This rela-
tively modest difference considering the major loss of activity
upon removal of the methanesulfonamide moiety as with com-
pound 18, suggests that these interactions are more important to
the compound’s binding to the enzyme than those of the sulfonyl
group on the C-ring.
It can therefore be postulated that given efforts to optimize the
other structural features of this or a similar series of molecules,
good activity could be obtained without the need for the sulfonyl
group of the C-ring. Such efforts are being vigorously pursued in
our laboratories.
In conclusion, we have developed a series of compounds closely
related to our earlier gem-dialkyl benzothiadiazines that exhibited,
in some cases, excellent activity in enzymatic assays against geno-
types 1a and 1b HCV NS5b polymerases, despite radical modifica-
tion of the C-ring. In one case a 4-quinoline carboxylic acid 16i
gave essentially equivalent enzymatic activity as highly potent
benzothiadiazine derivative 2. The surprising level of activity of
unsubstituted compound 16a suggests that the contribution of
the sulfonyl group of earlier benzothiadiazine analogs is far less
important than previously appreciated.
Acknowledgments
The Authors wish to thank Pamela L. Donner for finding and
making us aware of Ref. 9, which was critical to the success of this
work.
Supplementary data
6. Brown, H. C.; Narasimhan, S.; Choi, Y. M. Synthesis 1981, 441.
7. Yale, H. L.; Kalkstein, M. J. Med. Chem. 1967, 10, 334.
8. Yousif, M. M.; Saeki, S.; Hamana, M. Chem. Pharm. Bull. 1982, 30, 2326.
9. Mehnert, J.; Schnekenburger, J. Arch. Pharm. (Weinheim) 1988, 321, 897.
10. Most literature examples of N-methoxy pyridine or quinoline salts (see for
example: Katritzky, A. R.; Lunt, E. Tetrahedron 1969, 25, 4291) describe
isolation as the corresponding perchlorates. Due to the explosive nature of
perchlorates in general, we sought to avoid such an unnecessary hazard, and as
Supplementary data associated with this article can be found, in
References and notes
a
result found that the hexafluorophosphate counterion afforded nicely
1. (a) Dhanak, D.; Duffy, K. J.; Johnston, V. K.; Lin-Goerke, J.; Darcy, A. N.; Gu, B.;
Silverman, C.; Gates, A. T.; Nonnemacher, M. R.; Earnshaw, D. L.; Casper, D. J.;
Kaura, A.; Baker, A.; Greenwood, C.; Gutshall, L. L.; Maley, D.; DelVecchio, A.;
Macarron, R.; Hofmann, G. A.; Alnoah, Z.; Cheng, H.-Y.; Chan, G.; Khandekar, S.;
Keenan, R. M.; Sarisky, R. T. J. Biol. Chem. 2002, 277, 38322; (b) Tedesco, R.;
Shaw, A. N.; Bambal, R.; Chai, D.; Concha, N. O.; Darcy, M. G.; Dhanak, D.; Fitch,
D. M.; Gates, A.; Gerhardt, W. G.; Halegoua, D. L.; Han, C.; Hofmann, G. A.;
Johnston, V. K.; Kaura, A. C.; Liu, N.; Keenan, R. M.; Lin-Goerke, J.; Sarisky, R. T.;
Wiggall, K. J.; Zimmerman, M. N.; Duffy, K. J. J. Med. Chem. 2006, 49, 971.
crystalline non-hygroscopic salts which could be easily purified by
trituration with ether. Several of these salts, notably 14a and 17, remain free
flowing after storage at ambient temperature for >2 years following
completion of this project.
´
11. Dobosz, R.; Kolehmainen, E.; Valkonen, A.; Osmiałowski, B.; Gawinecki, R.
Tetrahedron 2007, 63, 9172.
12. Colletti, L. M.; Liu, Y.; Koev, G.; Richardson, P. L.; Chen, C.-M.; Kati, W. Anal.
Biochem. 2008, 383, 186.