A R T I C L E S
Mart´ın-Matute et al.
Scheme 1. Chemoenzymatic DKR of Secondary Alcohols
Recently, we communicated a highly efficient metal- and
enzyme-catalyzed DKR of alcohols at room temperature.22 This
is the fastest DKR of alcohols hitherto obtained by the
combination of metal and enzyme catalysts. Racemization was
effected by a new class of very potent hydrogen transfer catalysts
(3a-b). Evidence for the intermediacy of a ruthenium alkoxide
complex was also provided. Various mechanisms have been
proposed for Ru-catalyzed hydrogen transfer involving alcohols
and ketones,23 a transformation involved in the Ru-catalyzed
racemization of secondary alcohols. In some of those mech-
anisms the substrate is coordinated to the Ru center prior to
hydrogen transfer,5c,24 whereas in other mechanisms the substrate
is hydrogenated/dehydrogenated outside the coordination sphere
of the Ru.25,26 In some instances, it is difficult to determine
whether hydrogen transfer occurs inside or outside the coordina-
tion sphere of the metal.27,28
In this full account on mild and efficient DKR, a broad
substrate scope is demonstrated. Various heterocyclic alcohols
have successfully been deracemized for the first time by the
use of ruthenium catalyst 3a and an enzyme. Some examples
of potential applications are also given. A new and efficient
method for the preparation of ruthenium halide complexes 3a-
c, 5 and 6 has been developed. We have also prepared a
ruthenium hydride complex and studied its possible intermediacy
in the racemization mechanism. Furthermore, evidence is
presented that supports a mechanism in which the racemization
of the alcohol takes place within the coordination sphere of the
Ru atom. X-ray characterizations of the ruthenium precatalysts
3a, 3c and of ruthenium hydride 8 are provided.
first example was reported by Williams who combined a
rhodium catalyst and a lipase to obtain a DKR of secondary
alcohols with moderate efficiency.9 In 1997 we reported11 an
efficient DKR for the synthesis of enantiopure secondary
alcohols by use of ruthenium catalyst 112 in combination with
an immobilized lipase. This method has also been applied to
the DKR of different functionalized alcohols13-18 that are useful
building blocks in enantioselective synthesis. Kim and Park have
also employed catalyst 1 in the DKR of secondary alcohols19
and in the asymmetric transformation of ketones and enol
acetates to chiral acetates.20 In general, good yields and
enantioselectivities were obtained. A drawback with precatalyst
1 is that it needs activation at slightly elevated temperature;
hence, only thermostable enzymes can be used in the process.
Also, the addition of an appropriate hydrogen source is often
needed to prevent ketone formation, and p-chlorophenyl acetate
is required as a specifically designed acyl donor for good yields.
Results and Discussion
Synthesis of the Ruthenium Complexes. In our preliminary
work ruthenium complexes 3a and 3b were prepared by reaction
of C5Ph5X (X ) Cl, Br29) with [Ru3(CO)12] in toluene under
reflux.22 However, with this procedure the iodide complex (3c)
was not accessible since C5Ph5I could not be successfully
prepared. Therefore, we decided to develop a new method for
the synthesis of ruthenium halide complexes 3 (Scheme 2).
Recently, Kim and Park reported that ruthenium precatalyst
2 racemizes alcohols within 30 min at room temperature.21
However, when combined with an enzyme (lipase) in DKR at
room temperature very long reaction times (1.3 to 7 days) were
required, although the enzymatic KR takes only a few hours.
(22) Mart´ın-Matute, B.; Edin, M.; Boga´r, K.; Ba¨ckvall, J.-E. Angew. Chem.,
Int. Ed. 2004, 43, 6535-6539.
(11) (a) Larsson, A. L. E.; Persson, B. A.; Ba¨ckvall, J.-E. Angew. Chem., Int.
Ed. Engl. 1997, 36, 1211-1212. (b) Persson, B. A.; Larsson, A. L. E.; Le
Ray, M.; Ba¨ckvall, J.-E. J. Am. Chem. Soc. 1999, 121, 1645-1650.
(12) Menasche, N.; Shvo, Y. Organometallics 1991, 10, 3885-3891.
(13) Hydroxyacid derivatives: (a) Huerta, F. F.; Ba¨ckvall, J.-E. Org. Lett. 2001,
3, 1209-1212. (b) Runmo, A.-B. L.; Pa`mies, O.; Faber, K.; Ba¨ckvall, J.-
E. Tetrahedron Lett. 2002, 43, 2983-2986. (c) Huerta, F. F.; Laxmi, Y.
R. S.; Ba¨ckvall, J.-E. Org. Lett. 2000, 2, 1037-1040. (d) Pa`mies, O.;
Ba¨ckvall, J.-E. J. Org. Chem. 2002, 67, 1261-1265.
(23) For some reviews on the mechanism, see: (a) H2-hydrogenation and transfer
hydrogenation catalyzed by Ru-complexes: Clapham, S. E.; Hadzovic, A.;
Morris, R. H. Coord. Chem. ReV. 2004, 248, 2201-2237. (b) Gladiali, S.;
Alberico, E. Transition Metals for Organic Synthesis, 2nd ed.; Beller, M.,
Bolm, C., Eds.; Wiley-VCH: Weinheim, 2004; Vol. 2, pp 145-166.
(c) Ba¨ckvall, J.-E. J. Organomet. Chem. 2002, 105-111. (d) Sa´nchez-
Delgado, R. A.; Rosales, M. Coord. Chem. ReV. 2000, 196, 249-280.
(e) Zassinovich, G.; Mestroni, G.; Gladiali, S. Chem. ReV. 1992, 92, 1051-
1069.
(14) Hydroxynitriles: (a) Pa`mies, O.; Ba¨ckvall, J.-E. AdV. Synth. Catal. 2001,
343, 726-731. (b) Pa`mies, O.; Ba¨ckvall, J.-E. AdV. Synth. Catal. 2002,
344, 947-952.
(24) (a) Gladiali, S.; Mestroni, G. Transition Metals for Organic Synthesis;
Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim, 1998, Vol. 2, pp 97-
119. (b) Aranyos, A.; Csjernyik, G.; Szabo´, K. J.; Ba¨ckvall, J.-E. Chem.
Commun. 1999, 351-352. (c) Mizushima, E.; Yamaguchi, M.; Yamagishi,
T. J. Mol. Catal. A. Chem. 1999, 148, 69-75. (d) Standfest-Hauser, C.;
Slugovc, C.; Mereiter, K.; Schmid, R.; Kirchner, K.; Xiao, L.; Weissen-
steiner, W. J. Chem. Soc., Dalton Trans. 2001, 2989-2995.
(25) (a) Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97-102.
(b) Alonso, D. A.; Brandt, P.; Nordin, S. J. M.; Andersson, P. G. J. Am.
Chem. Soc. 1999, 121, 9580-9588. (c) Yamakawa, M.; Ito, H.; Noyori,
R. J. Am. Chem. Soc. 2000, 122, 1466-1478. (d) Petra, D. G. I.; Reek, J.
N. H.; Handgraaf, J.-W.; Meijer, E. J.; Dierkes, P.; Kamer, P. C. J.; Brussee,
J.; Schoemaker, H. E.; van Leeuwen, P. W. N. M. Chem. Eur. J. 2000, 6,
2818-2829.
(15) Azido alcohols: Pa`mies, O.; Ba¨ckvall, J.-E. J. Org. Chem. 2001, 66, 4022-
4025.
(16) Halo alcohols: Pa`mies, O.; Ba¨ckvall, J.-E. J. Org. Chem. 2002, 67, 9006-
9010.
(17) Hydroxyphosphonates: Pa`mies, O.; Ba¨ckvall, J.-E. J. Org. Chem. 2003,
68, 4815-4818.
(18) Diols: (a) Persson, B. A.; Huerta, F. F.; Ba¨ckvall, J.-E. J. Org. Chem.
1999, 64, 5237-5240. (b) Edin, M.; Steinreiber, J.; Ba¨ckvall, J.-E. Proc.
Natl. Acad. Sci. U.S.A. 2004, 101, 5761-5766. (c) Mart´ın-Matute, B.;
Ba¨ckvall, J.-E. J. Org. Chem. 2004, 69, 9191-9195.
(19) Kim, M.-J.; Choi, Y. K.; Choi, M. Y.; Kim, M. J.; Park, J. J. Org. Chem.
2001, 66, 4736-4738.
(26) Casey, C. P.; Singer, S. W.; Powell, D. R.; Hayashi, R. K.; Kavana, M. J.
Am. Chem. Soc. 2001, 123, 1090-1100.
(20) (a) Jung, H. M.; Koh, J. H.; Kim, M.-J.; Park, J. Org. Lett. 2000, 2, 409-
411. (b) Jung, H. M.; Koh, J. H.; Kim, M.-J.; Park, J. Org. Lett. 2000, 2,
2487-2490.
(27) (a) Casey, C. P.; Vos, T. E.; Bikzhanova, G. A. Organometallics 2003,
22, 901-903. (b) Johnson, J. B.; Ba¨ckvall, J.-E. J. Org. Chem. 2003, 68,
7681-7684.
(21) (a) Choi, J. H.; Kim, Y. H.; Nam, S. H.; Shin, S. T.; Kim, M.-J.; Park, J.
Angew. Chem., Int. Ed. 2002, 41, 2373-2376. (b) Choi, J. H.; Choi, Y.
K.; Kim, Y. H.; Park, E. S.; Kim, E. J.; Kim, M.-J.; Park, J. J. Org. Chem.
2004, 69, 1972-1977.
(28) Daley, C. J. A.; Bergens, S. H. J. Am. Chem. Soc. 2002, 124, 3680-3691.
(29) Connelly, N. G.; Manners, I. J. Chem. Soc., Dalton Trans. 1989, 283-
288.
9
8818 J. AM. CHEM. SOC. VOL. 127, NO. 24, 2005