C O M M U N I C A T I O N S
Figure 2. FCCP responses of Ca2+ and Mg2+ in cytosol of a PC12 cell
loaded with KCM-1AM; time course of concentrations of Ca2+ (a) and
Mg2+ (b) in cytosol, fluorescent image of Ca2+ change (c, between 0 and
21 s) and of Mg2+ change (d, between 0 and 38 s). FCCP was applied at
5 s. Fluorescent image of the PC12 cell excited at 420 nm (e).
Figure 1. (a) Structure of Ca2+-Mg2+ multifluorescent probe KCM-1.
(b-d) Absorbance and fluorescence spectra of 10 mM KCM-1 in the
absence of Ca2+ and Mg2+ (black line), in the presence of 1 mM Ca2+
(blue line), 500 mM Mg2+ (red line), and coexistence of 10 mM Ca2+ and
10 mM Mg2+ (green line); (b) absorbance, (c) fluorescence (excited at 358
nm), (d) fluorescence (excited at 424 nm). All spectra were measured at
pH 7.20 (50 mM HEPES, 130 mM KCl, 20 mM NaCl).
the measurement of the intracellular local concentrations will
become possible. This is the first reported example of the
simultaneous determination of multiple analytes in a cell with a
single-molecular multianalyte sensor. Soon, observations of multiple
signal transmitter dynamics are going to clarify the central problems
in cellular biology.
Table 1. Optical Properties and Binding Characteristics of KCM-1a
λ
nm
max
ꢀ
Fλ
nm
1
compound
M-1 cm-
Kd
Supporting Information Available: Experimental details. This
KCM-1
KCM-1 (Ca2+
KCM-1 (Mg2+
403
358
424
10400
7100
12900
480
475
485
)
)
14 µM
26 mM
References
a All data were taken in buffer simulating biological conditions (50 mM
HEPES, pH 7.2, 130 mM KCl, 20 mM NaCl); ꢀ stands for the extinction
coefficient, and Kd for the dissociation constants. The probe and cation
concentrations during the measurements were 10 µM for KCM-1, 1 mM
Ca2+ for KCM-1 (Ca2+) and 500 mM Mg2+ for KCM-1 (Mg2+).
(1) Haugland, R. P. Handbook of Fluorescent Probes and Research Chemicals,
9th ed.; Molecular Probes: Eugene, OR, 2002.
(2) Grynkiewicz, G.; Poenie, M.; Tsien R. Y. J. Biol. Chem. 1985, 260, 3440-
3450.
(3) Minta, A.; Kao, J. P. Y.; Tsien, R. Y. J. Biol. Chem. 1989, 264, 8171-
8178.
(4) Suzuki, Y.; Komatsu, H.; Ikeda, T.; Saito, N.; Araki, S.; Citterio, D.;
Hisamoto, H.; Kitamura, Y.; Kubota, T.; Nakagawa, J.; Oka, K.; Suzuki,
K. Anal. Chem. 2002, 74, 1423-1428.
(5) Komatsu, H.; Iwasawa, N.; Citterio, D.; Suzuki, Y.; Kubota, T.; Tokuno,
K.; Kitamura, Y.; Oka, K.; Suzuki, K. J. Am. Chem. Soc. 2004, 126,
16353-16360.
from the simultaneous complexation of both Ca2+ and Mg2+ to the
same probe molecule. In such a case, the binding of one ion might
affect the second binding site and is expected to reduce its affinity
toward the cation.
The esterified derivative KCM-1AM was synthesized as an
indicator suitable for loading into cells,16 and KCM-1 was suc-
cessfully loaded into differentiated PC12 cells. Solving eq 1 for
images taken at three different excitation wavelengths (365, 390,
420 nm), we observed that the intracellular concentrations of Ca2+
and Mg2+ were converted to the image. The mitochondria uncoupler
FCCP (carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone) was
applied to the KCM-1-loaded PC12 cells in order to evaluate the
intracellular Ca2+ and Mg2+ dynamics by imaging with KCM-1
(Figure 2). With administration of FCCP, the intracellular Ca2+
concentration was immediately increased and accompanied by a
slower Mg2+ increase. This observation is consistent with a previous
report stating that the mitochondria act as Ca2+ and Mg2+ stores,10
and their different kinetics imply their independent transport
mechanism across the mitochondrial membrane.
(6) Nagano, T.; Yoshimura, T. Chem. ReV. 2002, 102, 1235-1269.
(7) (a) Miyata, H.; Hayashi, H.; Suzuki, S.; Noda, N.; Kobayashi, A.;
Fujiwake, H.; Hirano, M.; Yamazaki, N. Biochem. Biophys. Res. Commun.
1989, 163, 500-505. (b) Sawano, A.; Hama, H.; Saito, N.; Miyawaki, A.
Biophys. J. 2002, 82, 1076-1085.
(8) (a) Clapham, D. E. Cell 1995, 80, 259-268. (b) Carafoli, E. Proc. Natl.
Acad. Sci. U.S.A. 2002, 99, 1115-1122.
(9) (a) Wolf, F. I.; Torsello, A.; Fasanella, A.; Cittadini, A. Mol. Aspects
Med. 2003, 24, 11-25. (b) Saris, N. E. L.; Mervaala, E.; Karppanen, H.;
Khawaja, J. A.; Lewenstam, A. Clin. Chem. Acta 2000, 294, 1-26.
(10) Kubota, T.; Shindo, Y.; Tokuno, K.; Komatsu, H.; Ogawa, H.; Kudo, S.;
Kitamura, Y.; Suzuki, K.; Oka, K. BBA-Mol. Cell Res. 2005, 1744, 19-
28.
(11) (a) Mooren, F. C.; Turi, S.; Gunzel, D.; Schlue, W. R.; Domschke, W.;
Singh, J.; Lerch, M. M. FASEB J. 2001, 15, 659-671. (b) Launikonis,
B. S.; Stephenson, D. G. J. Physiol. 2000, 526.2, 299-312.
(12) Tsien, R. Y. Biochemistry 1980, 19, 2396-2404.
(13) (a) London, R. E.; Rhee, C. K.; Murphy, E.; Gabel, S.; Levy, L. A. Am.
J. Physiol. 1994, 266, C1313-C1322. (b) Gee, K. R.; Archer, E. A.;
Lapham, L. A.; Leonard, M. E.; Zhou, Z. L.; Bingham, J.; Diwu, Z. Bioorg.
Med. Chem. Lett. 2000, 10, 1515-1518.
We successfully applied the single-molecular multianalyte sensor
KCM-1 for the simultaneous imaging of intracellular Ca2+ and
Mg2+ due to the different optical response patterns of the two
selective binding sites.
Using KCM-1 will allow the correlation of intracellular Ca2+
and Mg2+ to be clarified. Also, applying a high-power microscope,
(14) (a) de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J.
M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. ReV. 1997, 97,
1515-1566. (b) de Silva, A. P.; McClenaghan, N. D. Chem.sEur. J. 2002,
8, 4935-4945.
(15) Regehr, W. G.; Atluri, P. P. Biophys. J. 1995, 68, 2156-2170.
(16) Tsien, R. Y. Nature 1981, 290, 527-528.
JA0528228
9
J. AM. CHEM. SOC. VOL. 127, NO. 31, 2005 10799