C. Quinet, L. Sampoux, I. E. Markó
FULL PAPER
6 (374 mg, 93%). H NMR (300 MHz, CDCl3): δ = 7.41–7.13 (m,
1
[5]
For selected references on lanthanide- and actinide-catalysed
hydroaminations, see: with metallocene Ln catalysts: a) M. R.
Gagné, C. L. Stern, T. J. Marks, J. Am. Chem. Soc. 1992, 114,
275; b) Y. Li, T. J. Marks, J. Am. Chem. Soc. 1996, 118, 707; c)
Y. Li, T. J. Marks, J. Am. Chem. Soc. 1998, 120, 1757; d) S.
Tian, V. M. Arredondo, C. L. Stern, T. J. Marks, Organometal-
lics 1999, 18, 2568; e) G. A. Molander, E. D. Dowdy, S. K.
Pack, J. Org. Chem. 2001, 66, 4344; f) G. A. Molander, S. K.
Pack, J. Org. Chem. 2003, 68, 9214; g) A. Motta, G. Lanza,
I. L. Fragala, T. J. Marks, Organometallics 2004, 23, 4097; h)
A. Motta, I. L. Fragala, T. J. Marks, Organometallics 2006, 25,
5533; i) B. D. Stubbert, T. J. Marks, J. Am. Chem. Soc. 2007,
129, 4253; j) H. F. Yuen, T. J. Marks, Organometallics 2008, 27,
155; with biphenolate and binaphtholate Ln catalysts: k) D. V.
Gribkov, K. C. Hultzsch, Chem. Commun. 2004, 730; l) D. V.
Gribkov, F. Hampel, K. C. Hultzsch, J. Organomet. Chem.
2005, 690, 4441; m) D. V. Gribkov, K. C. Hultzsch, F. Hampel,
J. Am. Chem. Soc. 2006, 128, 3748; n) X. Yu, T. J. Marks, Orga-
nometallics 2007, 26, 365; with diamine/diamide Ln catalysts:
o) Y. K. Kim, T. Livinghouse, J. E. Bercaw, Tetrahedron Lett.
2001, 42, 2933; p) Y. K. Kim, T. Livinghouse, Angew. Chem.
Int. Ed. 2002, 41, 3645; q) Y. K. Kim, T. Livinghouse, Org.
Lett. 2005, 7, 1737; r) D. Riegert, J. Collin, A. Meddour, E.
Schultz, A. Trifonov, J. Org. Chem. 2006, 71, 2514; s) N. Meyer,
A. Zulys, P. W. Roesky, Organometallics 2006, 25, 4179; t) M.
Rastätter, A. Zulys, P. W. Roesky, Chem. Commun. 2006, 874;
u) M. Rastätter, A. Zulys, P. W. Roesky, Chem. Eur. J. 2007,
13, 3606; v) I. Aillaud, J. Collin, J. Hannedouche, E. Schulz,
Dalton Trans. 2007, 5105; w) S. Datta, M. T. Gamer, P. W. Roe-
sky, Organometallics 2008, 27, 1207.
5 H, Ph), 3.28 [quint (tt), J = 6.8 Hz, 1 H, 2-H], 3.09–2.96 (m, 3
H, 1-H and 5a-H), 2.96–2.82 (m, 1 H, 5b-H), 2.01–1.88 (m, 1 H,
3a-H), 1.88–1.67 (m, 3 H, 4-H and 6-H), 1.55–1.40 (m, 1 H, 3b-H)
ppm. 13C NMR (75 MHz, APT, CDCl3): δ = 136.8 (–, C-7), 129.4
and 129.1 (+, C-8 and C-9), 126.1 (+, C-10), 57.8 (+, C-2), 46.6
(–, C-5), 40.3 (–, C-1), 31.3 (–, C-3), 25.5 (–, C-4) ppm. MS (APCI,
70 eV): m/z (%) = 194 (59) [M + 1], 177 (10), 149 (15), 135 (11),
123 (66), 116 (11), 96 (10), 84 (100) [M + 1 – PhSH]. IR (film): ν
˜
= 3333 (w, N–H); 3055 (w, =C–H); 2961–2868 (s, C–H); 1620 (w),
1583 (m, C=C); 1479 (s), 1437 (s), 1393 (s), 1339 (m, C–N); 1088
(s), 1024 (s), 812 (m), 737 (s), 691 (s, C–S) cm–1. CAS: [106865–52–
5].
Supporting Information (see footnote on the first page of this arti-
cle): Full experimental details and spectroscopic data.
[6]
For intramolecular hydroamination of alkenes mediated by
transition metals, see: a) D. V. Gribkov, K. C. Hultzsch, Angew.
Chem. Int. Ed. 2004, 43, 5542; b) J. Y. Kim, T. Livinghouse,
Org. Lett. 2005, 7, 4391; c) C. F. Bender, R. A. Widenhoefer, J.
Am. Chem. Soc. 2005, 127, 1070; d) X. Han, R. A. Widenho-
efer, Angew. Chem. Int. Ed. 2006, 45, 1747; e) J. A. Bexrud, J. D.
Beard, D. C. Leitch, L. L. Schafer, Org. Lett. 2005, 7, 1959; f)
F. E. Michael, B. M. Cochran, J. Am. Chem. Soc. 2006, 128,
4246; g) J. Zhang, C.-G. Yang, C. He, J. Am. Chem. Soc. 2006,
128, 1798; h) C. Müller, C. Loos, N. Schulenberg, S. Doye, Eur.
J. Org. Chem. 2006, 2499; i) R. K. Thomson, J. A. Bexrud,
L. L. Schafer, Organometallics 2006, 25, 4069; j) Z. Liu, J. F.
Hartwig, J. Am. Chem. Soc. 2008, 130, 1570.
For intermolecular hydroamination of alkenes mediated by al-
kali metals, see: a) B. W. Howk, E. L. Little, S. L. Scott, G. M.
Whitman, J. Am. Chem. Soc. 1954, 76, 1899; b) H. Lehmkuhl,
D. Reinehr, J. Organomet. Chem. 1973, 55, 215; c) G. P. Pez,
J. E. Gall, Pure Appl. Chem. 1985, 57, 1917; d) D. Steinborn,
B. Thies, I. Wagner, R. Taube, Z. Chem. 1989, 29, 333; e) V.
Khedkar, A. Tillack, C. Benisch, J.-P. Melder, M. Beller, J. Mol.
Catal. A 2005, 241, 175.
Acknowledgments
Financial support for this work by the Université catholique de
Louvain and Merck Sharp and Dohme (Merck Academic Develop-
ment Program Award to IEM) is gratefully acknowledged.
[1] a) R. Taube, Applied Homogenous Catalysis with Organometal-
lic Compounds, Wiley-VCH, Weinheim, 1996, vol. 1, p. 507; b)
D. Steinborn, R. Taube, Z. Chem. 1986, 26, 349.
[2] For general references on hydroamination, see: a) M. B. Gasc,
A. Lattes, J. J. Perie, Tetrahedron 1983, 39, 703; b) J. J. Brunet,
D. Neibecker, F. Niedercorn, J. Mol. Catal. 1989, 49, 235; c)
D. M. Roundhill, Chem. Rev. 1992, 92, 1; d) T. E. Müller, M.
Beller, Chem. Rev. 1998, 98, 675; e) J.-J. Brunet, D. Neibecker,
Catalytic Heterofunctionalisation (Eds.: A. Togni, H.
Grützmacher), Wiley-VCH, 2001, ch. 4, p. 91; f) J. Seayad, A.
Tillack, C. G. Hartung, M. Beller, Adv. Synth. Catal. 2002, 344,
795; g) G. A. Molander, J. A. C. Romero, Chem. Rev. 2002, 102,
2161; h) F. Pohlki, S. Doye, Chem. Soc. Rev. 2003, 32, 104; i)
J. F. Hartwig, Pure Appl. Chem. 2004, 76, 507; j) S. Hong, T. J.
Marks, Acc. Chem. Res. 2004, 37, 673; k) T. E. Müller, K. C.
Hultzsch, M. Yus, F. Foubelo, M. Tada, Chem. Rev. 2008, 108,
3795.
[3] For intermolecular hydroamination of alkenes mediated by
transition metals, see: a) E. W. Stern, M. L. Spector, Proc.
Chem. Soc. London 1961, 370; b) A. Panunzi, R. De Renzi, G.
Palumbo, G. Paiaro, J. Am. Chem. Soc. 1969, 91, 3879; c) D. R.
Coulson, Tetrahedron Lett. 1971, 12, 429; d) B. Akermark, J. E.
Bäckvall, L. S. Hegedus, K. Zetterberg, K. Siirala-Hansen, K.
Sjöberg, J. Organomet. Chem. 1974, 72, 127; e) M. B. Gasc, A.
Lattes, J. J. Perie, Tetrahedron 1978, 34, 1943; f) see ref.[2a]; g)
J.-J. Brunet, D. Neibecker, K. Philippot, Tetrahedron Lett.
1993, 34, 3877.
[7]
[8]
a) N. Imai, T. Narita, T. Tsuruta, Tetrahedron Lett. 1971, 12,
3517; b) R. J. Schlott, J. C. Falk, K. W. Narducy, J. Org. Chem.
1972, 37, 4243; c) M. Beller, C. Breindl, Tetrahedron 1998, 54,
6359; d) M. Beller, C. Breindl, T. H. Riermeier, M. Eichberger,
H. Trauthwein, Angew. Chem. Int. Ed. 1998, 37, 3389; e) C. G.
Hartung, C. Breindl, A. Tillack, M. Beller, Tetrahedron 2000,
56, 5157; f) M. Kawatsura, J. F. Hartwig, J. Am. Chem. Soc.
2000, 122, 9546; O. Löber, M. Kawatsura, J. F. Hartwig, J. Am.
Chem. Soc. 2001, 123, 4366; g) U. Nettekoven, J. F. Hartwig,
J. Am. Chem. Soc. 2002, 124, 1166; h) J.-S. Ryu, G. Yanwu Li,
T. J. Marks, J. Am. Chem. Soc. 2003, 125, 12584; i) see ref.[2i]
;
j) A. M. Johns, M. Utsunomiya, C. D. Incarvito, J. F. Hartwig,
J. Am. Chem. Soc. 2006, 128, 1828.
[9]
a) H. Fujita, M. Tokuda, M. Nitta, H. Suginome, Tetrahedron
Lett. 1992, 33, 6359; b) V. M. Arredondo, F. E. McDonald,
T. J. Marks, J. Am. Chem. Soc. 1998, 120, 4871; c) V. M. Arre-
dondo, S. Tian, F. E. McDonald, T. J. Marks, J. Am. Chem.
Soc. 1999, 121, 3633; d) B. M. Trost, W. Tang, J. Am. Chem.
Soc. 2002, 124, 14542; e) S. Hong, T. J. Marks, J. Am. Chem.
[4] For intramolecular hydroamination of alkenes mediated by al-
kali metals, see: a) M. R. Crimmins, I. J. Casely, M. S. Hill, J.
Am. Chem. Soc. 2005, 127, 2042; b) P. Horrillo-Martinez, K. C.
Hultzsch, F. Hampel, Chem. Commun. 2006, 2221; c) S. Datta,
P. W. Roesky, S. Blechert, Organometallics 2007, 26, 4392.
1810
www.eurjoc.org
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2009, 1806–1811