Communication
ChemComm
Notes and references
1 Q.-F. Bai, C. Jin, J.-Y. He and G. Feng, Org. Lett., 2018, 20, 2172.
2 H. Huang, G.-J. Zhang and Y.-Y. Chen, Angew. Chem., Int. Ed., 2015,
54, 7872.
3 M. Yuan, L. Chen, J.-W. Wang, S.-J. Chen, K.-C. Wang, Y.-B. Xue,
G.-M. Yao, Z. W. Luo and Y.-H. Zhang, Org. Lett., 2015, 17, 346.
4 H. Wang, L.-N. Guo, S. Wang and X.-H. Duan, Org. Lett., 2015,
17, 3054.
5 M.-Z. Li, C. Wang, P. Fang and H.-B. Ge, Chem. Commun., 2011,
47, 6587.
6 G. G. Pawar, F. Robert, E. Grau, H. Cramail and Y. Landais, Chem.
Commun., 2018, 54, 9337.
7 A. H. Jatoi, G. G. Pawar, F. Robert and Y. Landais, Chem. Commun.,
2019, 55, 466.
Scheme 6 Synthetic application.a a Reaction conditions: see the general
procedure C for experimental details, and the isolated yields are reported,
unless otherwise noted.
8 H.-Q. Fan, P. Pan, Y.-Q. Zhang and W. Wang, Org. Lett., 2018,
20, 7929.
9 H. Hussain, A. Al-Harrasi, I. R. Green, I. Ahmed, G. Abbas and
N. U. Rehman, RSC Adv., 2014, 4, 12882.
10 A. K. Ghosh and M. Brindisi, J. Med. Chem., 2015, 58, 2895.
11 P. M. Cox and N. N. Bumpus, ACS Med. Chem. Lett., 2014, 5, 1156.
12 H. Takai, H. Obase, M. Teranishi, A. Karasawa, K. Kubo, K. Shuto,
Y. Kasuya, M. Hashikami, N. Karashima and K. Shigenobu, Chem.
Pharm. Bull., 1985, 33, 1129.
13 C. P. Leslie, J. Bentley, M. Biagetti, S. Contini, R. D. Fabio, D. Donati,
T. Genski, S. Guery, A. Mazzali, G. Merlo, D. A. Pizzi, F. Sacco,
C. Seri, M. Tessari, L. Zonzini and L. Caberlotto, Bioorg. Med. Chem.
Lett., 2010, 20, 6103.
14 L.-H. Zhuang, C. M. Tice, Z. Xu, W. Zhao, S. Cacatian, Y.-J. Ye,
S. B. Singh, P. Lindblom, B. M. McKeever, P. M. Krosky, Y. Zhao,
D. Lala, B. A. Kruk, S. Meng, L. Howard, J. A. Johnson, Y. Bukhtiyarov,
R. Panemangalore, J. Guo, R. Guo, F. Himmelsbach, B. Hamilton,
A. Schuler-Metz, H. Schauerte, R. Gregg, G. M. McGeehan, K. Leftheris
and D. A. Claremon, Bioorg. Med. Chem., 2017, 25, 3649.
15 Y.-D. Zhang, J.-P. Wu, G.-H. Li, K. R. Fandrick, J. Gao, Z. Tan,
J. Johnson, W. Li, S. Sanyal, J. Wang, X.-F. Sun, J. C. Lorenz,
S. Rodriguez, J. T. Reeves, N. Grinberg, H. Lee, N. Yee, B.-Z. Lu
and C. H. Senanayake, J. Org. Chem., 2016, 81, 2665.
16 N. C. Tran, H. Dhondt, M. Flipo, B. Deprez and N. Willand, Tetra-
hedron Lett., 2015, 56, 4119.
acid structure III. Finally, the imine epoxidation-enabled decarboxy-
lation results in the formation of the product 3a. This distinct
decarboxylation mechanism was further supported by the control
reactions (see the ESI,† Schemes S2E and S4).
The epoxide intermediate-based mechanism inspired us to
explore the reaction of 1a using NaClO as the oxidant, where a
three-membered cyclic halonium ion intermediate might be
in situ generated to facilitate the synthesis of chloro-substituted
3D cyclic carbamates. To our delight, NaClO was also proved to be
an effective reaction promoter (Table S3, ESI†), enabling the facile
construction of diverse chrolo-substituted 3D cyclic carbamates
with inferior reaction efficiency and with a handle for further
synthetic elaboration (10a–10d, 38–57% yields, Scheme 6).
In conclusion, we describe here an unprecedented metal-
free intramolecular epoxidation-decarboxylative alkoxylation
cascade reaction of readily accessible and easily handled olefinic
oxamic acids using m-CPBA as the sole promoter. Distinct from
the well-established radical-engaged decarboxylation of oxamic acids,
the new process follows an ionic pathway in which imine epoxida-
tion enables the decarboxylative C–O bond formation. The new
reactivity transforms into an alternative approach for the synthesis
of structurally diverse and medicinally valuable 5–7 membered 3D
cyclic carbamate architectures. Furthermore, this protocol is mild
and operationally simple and displays excellent functional group
tolerance and broad substrate scope. Further exploration of the
asymmetric version of this transformation and validation of the
proposed mechanism are still ongoing in our laboratory.
´
17 J. L. G. Ruano, J. Aleman, C. Fajardo and A. Parra, Org. Lett., 2005,
7, 5493.
18 F. A. Davis, J. Lamendola, U. Nadir, E. W. Kluger, T. C. Sedergran,
T. W. Panunto, R. Billmers, R. Jenkins and I. J. Turchi, J. Am. Chem.
Soc., 1980, 102, 2000.
19 R. D. Taylor, M. MacCoss and A. D. G. Lawson, J. Med. Chem., 2014,
57, 5845.
20 A. Garzan, A. Jaganathan, M. N. Salehi, R. Yousefi, D. C. Whitehead,
J. E. Jackson and B. Borhan, Chem. – Eur. J., 2013, 19, 9015.
21 N. Salehi Marzijarani, R. Yousefi, A. Jaganathan, K. D. Ashtekar,
J. E. Jackson and B. Borhan, Chem. Sci., 2018, 9, 2898.
22 Y.-M. Yu, Y.-N. Huang and J. Deng, Org. Lett., 2017, 19, 1224.
23 K. Kobayashi, S. Fukamachi, D. Nakamura, O. Morikawa and
H. Konishi, Heterocycles, 2008, 75, 95.
24 L. Sun, J.-H. Ye, W.-J. Zhou, X. Zeng and D.-G. Yu, Org. Lett., 2018,
20, 3049.
25 J.-H. Ye, L. Song, W.-J. Zhou, T. Ju, Z.-B. Yin, S.-S. Yan, Z. Zhang, J. Li
and D.-G. Yu, Angew. Chem., Int. Ed., 2016, 55, 10022.
26 Y. Takeda, S. Okumura, S. Tone, I. Sasaki and S. Minakata, Org. Lett.,
2012, 14, 4874.
Financial support from the program of the National Natural
Science Foundation of China (21602060, 21871086, Y.-Q. Z.;
21572055, 21738002, W. W.) and the Chinese Fundamental
Research Funds for the Central Universities (ECUST: WY1714033)
is gratefully acknowledged.
27 M. O. F. Goulart, A. G. Cioletti, J. D. de Souza Filho, C. A. De Simone,
E. E. Castellano, F. S. Emery, K. C. G. De Moura, M. C. F. R. Pinto
and A. V. Pinto, Tetrahedron Lett., 2003, 44, 3581.
28 F. V. Singh, H. M. S. Milagre, M. N. Eberlin and H. A. Stefani,
Tetrahedron Lett., 2009, 50, 2312.
Conflicts of interest
There are no conflicts to declare.
This journal is ©The Royal Society of Chemistry 2020
Chem. Commun., 2020, 56, 86--89 | 89