Paper
RSC Advances
the model substrate. As depicted in the literature,14b the di-
iodination product 6 could be obtained in 97% yield aer stir-
red at 80 ꢀC for 2 h in the presence of I2. Combining the NIS and
I2 system in one pot provided the corresponding tri-iodination
product 7 in 94% yield.
2045; (d) X. Zeng, S. Liu, G. B. Hammond and B. Xu, ACS
Catal., 2018, 8, 904–909; (e) G. Jiang, J. Li, C. Zhu, W. Wu
and H. Jiang, Org. Lett., 2017, 19, 4440–4443; (f) R. Chung,
A. Vo and J. E. Hein, ACS Catal., 2017, 7, 2505–2510; (g)
P. J. Gonzalez-Liste, J. Francos, S. E. Garcia-Garrido and
V. Cadierno, J. Org. Chem., 2017, 82, 1507–1516; (h)
X. Zeng, S. Liu, Z. Shi and B. Xu, Org. Lett., 2016, 18, 4770–
4773; (i) L. Huang, A. M. Olivares and D. J. Weix, Angew.
Chem., Int. Ed., 2017, 56, 11901–11905; (j) G. Jiang, C. Zhu,
J. Li, W. Wu and H. Jiang, Adv. Synth. Catal., 2017, 359,
1208–1212; (k) J. Li, W. Hu, C. Li, S. Yang, W. Wu and
H. Jiang, Org. Chem. Front., 2017, 4, 373–376; (l)
M. Ramanathan and S. Liu, Tetrahedron, 2017, 73, 4317–
4322; (m) V. K. Singh, A. Upadhyay and R. K. P. Singh,
Tetrahedron Lett., 2017, 58, 156–158; (n) P. Szuroczki,
B. Boros and L. Kollar, Tetrahedron, 2018, 74, 6129–6136;
(o) M. Ye, Y. Wen, H. Li, Y. Fu and Q. Wang, Tetrahedron
Lett., 2016, 57, 4983–4986; (p) C. R. Reddy, S. A. Panda and
A. Ramaraju, J. Org. Chem., 2017, 82, 944–949; (q)
R. M. Chowdhury and J. D. Wilden, Org. Biomol. Chem.,
2015, 13, 5859–5861; (r) S. Mader, L. Molinari, M. Rudolph,
F. Rominger and S. K. Hashmi, Chem.–Eur. J., 2015, 21,
3910–3913.
ꢀ
Finally, we studied the recyclability of Al2O3 and 4 A MS.
ꢀ
Al2O3 and 4 A MS could be used as a recyclable catalyst for the
direct iodination of phenyl acetylene 1aa (10 mmol) as it
provided 96%, 93% and 88% yield at the rst, second and third
run, respectively (Fig. S1†). The severe decrease of the yield of
the iodination was probably because the active sites of Al2O3
were blocked by unknown compounds and the unavoidable loss
of solid catalyst during recovery and washing.
Although the detailed mechanism for the g-Al2O3 mediated
iodination remains unclear, we proposed that the dehydrated
surface of g-Al2O3, which contains partly exposed Al3+ and O2ꢁ
,
could serve as an effective medium for electrophilic iodination
and greatly increase the chemoselectivity and rate of the reac-
tion. Investigation of the detail mechanism and further appli-
cations of this methodology are toward in our laboratory.
Conclusions
In conclusion, we have developed an efficient approach for the
synthesis of 1-iodoalkynes via g-Al2O3 mediated direct iodin-
ation of terminal alkynes in the presence of NIS. Firstly, this
protocol has excellent reactivity, high chemoselectivity and
good functional group tolerance, and can be used for large-scale
preparation of various 1-iodoalkynes. Secondly, with the aid of
Al2O3 the mono-, di-, and tri-iodination products could be ob-
3 (a) G. W. Kabalka and A. R. Mereddy, Tetrahedron, 2004, 45,
1417–1419; (b) J. E. Luithle and J. Pietruszka, Eur. J. Org.
Chem., 2000, 2557–2562; (c) I. J. Blackmore, A. N. Boa,
E. J. Murray, M. Dennis and S. Woodward, Tetrahedron
Lett., 1999, 40, 6671–6672; (d) T. Mandai, T. Matsumoto,
M. Kawada and J. Tsuji, J. Org. Chem., 1992, 57, 6090–6094.
4 (a) D. L. Uasnov and H. Yamamoto, J. Am. Chem. Soc., 2011,
133, 1286–1289; (b) M. L. N. Rao and M. Periasamy, Synth.
Commun., 1995, 25, 2295–2299; (c) L. Meng, P. Cai, Q. Guo
and S. Xue, Synth. Commun., 2008, 38, 225–231; (d)
S. Mader, L. Molinari, M. Rudolph, F. Rominger and
S. K. Hashmi, Chem.–Eur. J., 2015, 21, 3910–3913; (e)
B. Wang, J. Zhang, X. Wang, N. Liu, W. Chen and Y. Hu, J.
Org. Chem., 2013, 78, 10519–10523; (f) M. Li, Y. Li, B. Zhao,
F. Liang and L. Jin, RSC Adv., 2014, 4, 30046–30049; (g)
W. Shi, Z. Guan, P. Cai and H. Chen, J. Catal., 2017, 353,
199–204; (h) J. Yan, J. Li and D. Cheng, Synlett, 2007, 2442–
2444; (i) D. S. Rao, T. R. Reddy and S. Kashyap, Org.
Biomol. Chem., 2018, 16, 1508–1518; (j) S. Chen, T. Hung,
T. Lin and F. Tsai, J. Chin. Chem. Soc., 2009, 56, 1078–1081;
(k) S. Kodumuri, S. Peraka, N. Mameda, D. Chevella,
R. Banothu, K. S. Gajula, S. Thokali and N. Nama,
ChemistrySelect, 2017, 2, 748–752; (l) K. R. Reddy,
M. Venkateshwar, C. U. Maheswari and P. S. Kumar,
Tetrahedron Lett., 2010, 51, 2170–2173; (m) Y. Liu,
D. Huang, J. Huang and K. Maruoka, J. Org. Chem., 2017,
82, 11865–11871; (n) X. Liu, G. Chen, C. Li and P. Liu,
Synlett, 2018, 2051–2055; (o) T. Ferris, L. Carroll,
R. C. Mease, A. C. Spivey and E. O. Aboagye, Tetrahedron
Lett., 2019, 60, 936–939; (p) S. Chen, X. Zhang, H. Zhao,
X. Guo and X. Hu, Chin. J. Inorg. Chem., 2018, 38, 1172–
1176; (q) A. Gomez-Herrera, F. Nahra, M. Brill, S. P. Nolan
and C. S. J. Cazin, ChemCatChem, 2016, 8, 3381–3388; (r)
M. Nouzarian, R. Hosseinzadeh and H. Golchoubian,
ꢀ
tained in high yield. Thirdly, the Al2O3 and 4 A MS could be
reused for the direct iodination of terminal alkynes at least once
without severe decrease of the yield.
Conflicts of interest
There are no conicts to declare.
Acknowledgements
We gratefully acknowledge the Hubei Provincial Department of
Education (T201719) for generous nancial support.
References
1 For reviews, see: (a) A. Haque, R. A. Al-Balushi, I. J. Al-
Busaidi, M. S. Khan and P. R. Raithby, Chem. Rev., 2018,
118, 8474–8597; (b) W. Wu and H. Jiang, Acc. Chem. Res.,
2014, 47, 82483–82504; (c) W. Shi and A. Lei, Tetrahedron
Lett., 2014, 55, 2763–2772; (d) J. P. Brand and J. Waser,
Chem. Soc. Rev., 2012, 41, 4165–4179.
2 For selected recent examples, see: (a) M. E. de Orbe,
M. Zanini, O. Quinonero and A. M. Echavarren, ACS Catal.,
2019, 9, 7817–7822; (b) X. Zeng, B. Chen, Z. Lu,
G. B. Hammond and B. Xu, Org. Lett., 2019, 21, 2772–2776;
(c) S. M. Khake, S. Jain, U. N. Patel, R. G. Gonnade,
K. Vanka and B. Punji, Organometallics, 2018, 37, 2037–
This journal is © The Royal Society of Chemistry 2020
RSC Adv., 2020, 10, 3946–3950 | 3949