ORGANIC
LETTERS
2003
Vol. 5, No. 4
495-498
Catalytic Asymmetric Synthesis of Both
syn- and anti-3,5-Dihydroxy Esters:
Application to 1,3-Polyol/r-Pyrone
Natural Product Synthesis
Shin-ya Tosaki, Tetsuhiro Nemoto, Takashi Ohshima, and Masakatsu Shibasaki*
Graduate School of Pharmaceutical Sciences, The UniVersity of Tokyo, Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan
Received November 28, 2002
ABSTRACT
We describe a catalytic asymmetric synthesis of both syn- and anti-3,5-dihydroxy esters. The method relies upon catalytic asymmetric epoxidation
of r,â-unsaturated imidazolides and amides, using lanthanide-BINOL complexes, and diastereoselective reduction of ketones. The method
was applied to the enantioselective syntheses of 1,3-polyol/r-pyrone natural products 9a, 9b, and strictifolione (10). The absolute stereochemistry
of 9a and 9b was also determined.
Optically active syn- and anti-1,3-diol units are ubiquitous
structural motifs in various biologically active compounds.
For example, the polyene class of macrolide antibiotics
contains extended 1,3-polyol chains as the common structural
feature.1 Due to their distribution, as well as their interesting
structure, extensive efforts have focused on the development
of an efficient synthetic method for stereoselective construc-
tion of these core fragments.1,2 Among the many methods
reported to date, Leighton’s tandem reaction strategy is the
state of the art in this field, affording syn,syn-1,3,5-triols
diastereoselectively in a single-pot reaction.3,4 In addition,
efficient approaches to optically active 1,3-diol units have
been achieved by using several catalytic asymmetric
reactions.5-8 We recently developed the catalytic asymmetric
epoxidation of R,â-unsaturated imidazolides9c and R,â-
unsaturated amides9d using a lanthanide-BINOL (Ln-BINOL)
(5) Noyori hydrogenation: (a) Rychnovsky, S. D.; Khire, U. R.; Yang,
G. J. Am. Chem. Soc. 1997, 119, 2058. (b) Sinz, C. J.; Rychnovsky, S. D.
Angew. Chem., Int. Ed. 2001, 40, 3224.
(6) Sharpless asymmetric epoxidation: (a) Ma, P.; Martin, V. S.;
Masamune, S.; Sharpless, K. B.; Vitti, S. M. J. Org. Chem. 1982, 47, 1378.
(b) Miyazawa, M.; Matsuoka, E.; Sasaki, S.; Maruyama, K.; Miyashita, M.
Chem. Lett. 1998, 109.
(7) Sharpless asymmetric dihydroxylation: (a) Hunter, T. J.; O’Doherty,
G. A. Org. Lett. 2001, 3, 1049. (b) Hunter, T. J.; O’Doherty, G. A. Org.
Lett. 2001, 3, 2777.
(8) Biocatalytic reduction: Wolberg, M.; Hummel, W.; Mu¨ller, M. Chem.
Eur. J. 2001, 7, 4562.
(1) Rychnovsky, S. D. Chem. ReV. 1995, 95, 2021.
(2) For a review, see: Schneider, C. Angew. Chem., Int. Ed. 1998, 37,
1375.
(3) (a) Zucuto, M. J.; Leighton, J. L. J. Am. Chem. Soc. 2000, 122, 8587
and references therein. (b) Wang, X.; Meng, Q.; Nation, A. J.; Leighton, J.
L. J. Am. Chem. Soc. 2002, 124, 10672. (c) Zacuto, M. J.; O’Malley, S. J.;
Leighton, J. L. J. Am. Chem. Soc. 2002, 124, 7890.
(4) For the one-pot, five-component linchpin coupling tactic, see: Smith,
A. B., III; Pitram, S. M. Org. Lett. 1999, 1, 2001.
(9) (a) Bougauchi, M.; Watanabe, S.; Arai, T.; Sasai. H.; Shibasaki. M.
J. Am. Chem. Soc. 1997, 119, 2329. (b) Nemoto, T.; Ohshima, T.; Shibasaki,
M. J. Am. Chem. Soc. 2001, 123, 2725 and references therein. (c) Nemoto,
T.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 9474. (d)
Nemoto, T.; Kakei, H.; Gnanadesikan, V.; Tosaki, S.; Ohshima, T.;
Shibasaki, M. J. Am. Chem. Soc. 2002, 124, 14544.
10.1021/ol0273708 CCC: $25.00 © 2003 American Chemical Society
Published on Web 01/29/2003