3
Gu, Y.-C. Coord. Chem. Rev. 2014, 261, 28-72; (e) Lu, Y.;
Liu, C.; Chen, Q. Y. Curr. Org. Chem. 2015, 19, 1638-1650.
ACCEPTED MANUSCRIPT
3. (a) Fier, P. S.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134,
5524-5527; (b) Prakash, G. K. S.; Ganesh, S. K.; Jones, J.-P.;
Kulkarni, A.; Masood, K.; Swabeck, J. K.; Olah, G. A. Angew.
Chem. Int. Ed. 2012, 51, 12090-12094; (c) Fujiwara, Y.; Dixon,
J. A.; Rodriguez, R. A.; Baxter, R. D.; Dixon, D. D.; Collins, M.
R.; Blackmond, D. G.; Baran, P. S. J. Am. Chem. Soc. 2012,
134, 1494-1497; (d) Iida, T.; Hashimoto, R.; Aikawa, K.; Ito,
S.; Mikami, K. Angew. Chem. Int. Ed. 2012, 51, 9535-9538; (e)
Gu, Y.; Leng, X.; Shen, Q. Nat. Commun. 2014, 5, 5405; (f)
Chen, D.; Ni, C.; Zhao, Y.; Cai, X.; Li, X.; Xiao, P.; Hu, J.
Angew. Chem. Int. Ed. 2016, 55, 12632-12636; (g) Lin, Q.-Y.;
Xu, X.-H.; Zhang, K.; Qing, F.-L. Angew. Chem. Int. Ed. 2016,
55, 1479-1483; (h) Xu, L.; Vicic, D. A. J. Am. Chem. Soc.
2016; (i) Zhu, J.; Liu, Y.; Shen, Q. Angew. Chem. Int. Ed. 2016,
55, 9050-9054; (j) Xie, Q.; Ni, C.; Zhang, R.; Li, L.; Rong, J.;
Hu, J. Angew. Chem. Int. Ed. 2017, 56, 3206-3210; (k) Miao,
W.; Zhao, Y.; Ni, C.; Gao, B.; Zhang, W.; Hu, J. J. Am. Chem.
Soc. 2018, 140, 880-883.
4. (a) Fujikawa, K.; Fujioka, Y.; Kobayashi, A.; Amii, H. Org.
Lett. 2011, 13, 5560-5563; (b) He, Z.; Hu, M.; Luo, T.; Li, L.;
Hu, J. Angew. Chem., Int. Ed. 2012, 51, 11545-11547; (c) Shen,
X.; Zhang, W.; Ni, C.; Gu, Y.; Hu, J. J. Am. Chem. Soc. 2012,
134, 16999-17002; (d) Shen, X.; Liu, Q.; Luo, T.; Hu, J. Chem.
- Eur. J. 2014, 20, 6795-6800; (e) Belhomme, M.-C.; Poisson,
T.; Pannecoucke, X. J. Org. Chem. 2014, 79, 7205-7211; (f)
Levin, V. V.; Trifonov, A. L.; Zemtsov, A. A.; Struchkova, M.
I.; Arkhipov, D. E.; Dilman, A. D. Org. Lett. 2014, 16, 6256-
6259; (g) Su, Y.-M.; Hou, Y.; Yin, F.; Xu, Y.-M.; Li, Y.;
Zheng, X.; Wang, X.-S. Org. Lett. 2014, 16, 2958-2961.
5. (a) Zhang, L.; Li, Y.; Hu, J. J. Fluorine Chem. 2007, 128, 755-
761; (b) Ni, C.; Liu, J.; Zhang, L.; Hu, J. Angew. Chem. Int. Ed.
2007, 46, 786-789.
Scheme 4. The conversion of aldehydes into difluoromethyl ketones.
Isolated yields. Reaction conditions: substrate 1(0.5 mmol) and 2
(0.75 mmol) in CH3CN (5 mL) at 50 oC for 7 h and then 80 oC for 3
h. aThe yield was determined by 19F NMR spectroscopy.
3. Conclusion
In summary, we have described the decarboxylative
difluoromethylation of aldehydes and imines with potassium
-
phenylsulfonyl difluoroacetate (PhSO2CF2CO2 K+) simply under
warming conditions. Interestingly, elevating the reaction
temperature for the conversion of aldehydes led to the direct
removal of phenylsulfonyl group to afford difluoromethyl
ketones. This work represents the first protocol for heat-
promoted removal of PhSO2 group from PhSO2CF2 moiety.
Potassium phenylsulfonyl difluoroacetate may become an
efficient difluoromethylation reagent because of its facile
synthetic route, ease of handling and the possibility for
convenient removal of PhSO2 group.
Acknowledgments
6. (a) Hine, J.; Porter, J. J. J. Am. Chem. Soc. 1960, 82, 6178-
6181; (b) Hu, M.; Gao, B.; Ni, C.; Zhang, L.; Hu, J. J. Fluorine
Chem. 2013, 155, 52-58.
7. Prakash, G. K. S.; Wang, Y.; Hu, J.; Olah, G. A. J. Fluorine
Chem. 2005, 126, 1361-1367.
8. Ni, C.; Hu, J. Tetrahedron Lett. 2005, 46, 8273-8277.
9. He, Z.; Luo, T.; Hu, M.; Cao, Y.; Hu, J. Angew. Chem. Int. Ed
2012, 51, 3944-3947.
We thank National Basic Research Program of China
(2015CB931903), the National Natural Science Foundation
(21421002, 21472222, 21502214, 21672242), the Chinese
Academy of Sciences (XDA02020105, XDA02020106), and Key
Research Program of Frontier Sciences (CAS) (QYZDJ-SSW-
SLH049) for financial support.
References and notes
10. Wang, X.; Liu, G.; Xu, X.-H.; Shibata, N.; Tokunaga, E.;
Shibata, N. Angew. Chem. Int. Ed. 2014, 53, 1827-1831.
11. (a) Zheng, J.; Cai, J.; Lin, J.-H.; Guo, Y.; Xiao, J.-C. Chem.
Commun. 2013, 49, 7513-7515; (b) Zheng, J.; Lin, J.-H.; Cai, J.;
Xiao, J.-C. Chem. - Eur. J. 2013, 19, 15261-15266; (c) Deng,
X.-Y.; Lin, J.-H.; Zheng, J.; Xiao, J.-C. Chem. Commun. 2015,
51, 8805-8808; (d) Zheng, J.; Lin, J.-H.; Deng, X.-Y.; Xiao, J.-
C. Org. Lett. 2015, 17, 532-535; (e) Zheng, J.; Lin, J.-H.; Yu,
L.-Y.; Wei, Y.; Zheng, X.; Xiao, J.-C. Org. Lett. 2015, 17,
6150-6153; (f) Zheng, J.; Wang, L.; Lin, J.-H.; Xiao, J.-C.;
Liang, S. H. Angew. Chem. Int. Ed. 2015, 54, 13236-13240; (g)
Zheng, J.; Cheng, R.; Lin, J.-H.; Yu, D. H.; Ma, L.; Jia, L.;
Zhang, L.; Wang, L.; Xiao, J.-C.; Liang, S. H. Angew. Chem.
Int. Ed. 2017, 56, 3196-3200; (h) Yu, J.; Lin, J.-H.; Xiao, J.-C.
Angew. Chem. Int. Ed. 2017, 56, 16669-16673.
1. (a) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529-2591; (b)
Erickson, J. A.; McLoughlin, J. I. J. Org. Chem. 1995, 60, 1626-
1631; (c) Narjes, F.; Koehler, K. F.; Koch, U.; Gerlach, B.;
Colarusso, S.; Steinkühler, C.; Brunetti, M.; Altamura, S.; De
Francesco, R.; Matassa, V. G. Bioorg. Med. Chem. Lett. 2002,
12, 701-704; (d) Chowdhury, M. A.; Abdellatif, K. R. A.; Dong,
Y.; Das, D.; Suresh, M. R.; Knaus, E. E. J. Med. Chem. 2009,
52, 1525-1529.
2. (a) Hu, J.; Zhang, W.; Wang, F. Chem. Commun. 2009, 7465;
(b) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem. Int. Ed.
2013, 52, 8214-64; (c) Landelle, G.; Panossian, A.; Leroux, F.
R.; Pazenok, S.; Vors, J.-P. Beilstein J. Org. Chem. 2013, 9,
2476-536; (d) Zhang, C.-P.; Chen, Q.-Y.; Guo, Y.; Xiao, J.-C.;