D. F. Berry, D. A. Berry / Bioorg. Med. Chem. Lett. 15 (2005) 3157–3161
3161
References and notes
1. Ertl, D. S.; Young, K. A.; Raboy, V. J. Environ. Qual.
1998, 27, 299.
2. Peperzak, P.; Caldwell, A. G.; Hunziker, R. R.; Black, C.
A. Soil Sci. 1959, 87, 293.
3. Richardson, A. E.; Hadobas, P. A.; Hayes, J. E.; OÕHara,
C. P.; Simpson, R. J. Plant Soil 2001, 229, 47.
4. Richardson, A. E.; Hadobas, P. A. Can. J. Microbiol.
1997, 43, 509.
5. Jareonkitmongkol, S.; Ohya, M.; Watanabe, R.; Takagi,
H.; Nakamori, S. J. Ferment. Bioeng. 1997, 83, 393.
6. Kulaev, I. S. The Biochemistry of Inorganic Polyphos-
phates; Wiley: New York, 1979.
7. Kornberg, A.; Rao, N. N.; Ault-Riche, D. Annu. Rev.
Biochem. 1999, 68, 89.
8. Cosgrove, D. J. Studies in Organic Chemistry 4. Inositol
Phosphates: Their Chemistry, Biochemistry, and Physiol-
ogy; Elsevier Scientific Pub.: Amsterdam, 1980, Chapter
10.
Figure 4. Separation of tethered (T)-IP5 (2) and the phosphatidylin-
ositol intermediates produced during the 6-phytase catalyzed dephos-
phorylation of T-IP5 was achieved by reversed phase ion pair
chromatography. Where (b0) = T-IP3 (tR 6.9 min); (c0) = T-IP4 (tR
8.6 min), and (d) = T-IP5 (2) (tR 11.2 min). Note that primes are used,
since T-IP3 and T-IP4 may be different isomeric forms of the
compounds referred to in Figure 1. The ratio of the MeOH–H2O
component of the mobile phase was 57:43.
ysis. Once again, there was no indication that the amide
bond, securing the benzamido chromophore to the lin-
ker, was hydrolyzed. T-myo-inositol was not detected
in the 6-phytase reaction mixture (data not shown).
9. Oh, B.-C.; Choi, W.-C.; Park, S.; Kim, Y.-o.; Oh, T.-K.
Appl. Microbiol. Biotechnol. 2004, 63, 362.
10. Turner, B. L.; Paphazy, M. J.; Haygrath, P. M.; McKel-
vie, I. D. Philos. Trans. R. Soc. London B. 2002, 357, 449.
11. Two numbering schemes are found in the literature for
myo-inositol derivatives. The numbering scheme for com-
pound 3 reflects the numbering scheme for the Chemical
Abstracts Index Name for this compound.
12. Garegg, P. J.; Iversen, T.; Johansson, R.; Lindberg, B.
Carbohydr. Res. 1984, 130, 322.
13. Hirschmann, R.; Hynes, J.; Cichy-Knight, M. A.; van
Rijn, R. D.; Sprengeler, P. A.; Spoors, P. G.; Shakespeare,
W. C.; Pietranico-Cole, S.; Barbosa, J.; Liu, J.; Yao, W.
Q.; Rohrer, S.; Smith, A. B., III J. Med. Chem. 1998, 41,
1382.
14. Murahashi, S.-I.; Naota, T.; Nakajima, N. Tetrahedron
Lett. 1985, 26, 925.
15. Ozaki, S.; Kondo, Y.; Nakahira, H.; Yamaoka, S.;
Watanabe, Y. Tetrahedron Lett. 1987, 28, 4691.
16. Kozikowski, A. P.; Fauq, A. H.; Wilcox, R. A.; Nahorski,
S. R. J. Org. Chem. 1994, 59, 2279.
In summary, we have synthesized a novel tethered phy-
tic acid probe that can serve as a chromophoric sub-
strate for phytase. Dephosphorylation of T-IP5 (2) is
readily quantified using reversed phase HPLC with
UV detection. Detection of the T-phosphatidylinositol
intermediates, T-IP4 and T-IP3, in an HPLC analysis
of assay samples containing uncharacterized phospho-
hydrolases would be indicative of 3-phytase or possibly
6-phytase. It is important to realize, however, bacterial
cells contain numerous phosphohydrolases with over-
lapping substrate specifities.28 We cannot yet rule out
that non-specific phosphohydrolases may be able to
dephosphorylate T-IP5 (2), but if this were the case,
we suspect the dephosphorylation would be at a much
slower rate, suggesting that reaction kinetics could also
play a useful role in identifying a 3- or 6-phytase.
17. Kilgour, G. L.; Ballou, C. E. J. Am. Chem. Soc. 1958, 80,
3956.
18. Krylova, V. N.; Gornaeva, N. P.; Oleinik, G. F.; Shvets,
V. I. Zh. Org. Khim. 1980, 16, 315.
19. Marecek, J. F.; Prestwich, G. D. Tetrahedron Lett. 1991,
32, 1863.
20. Riley, A. M.; Laude, A. J.; Taylor, C. W.; Potter, B. V. L.
Bioconjugate Chem. 2004, 15, 278.
21. Pietrusiewicz, K. M.; Salamonczyk, G. M.; Bruzik, K. S.;
Wieczorek, W. Tetrahedron 1992, 48, 5523.
22. Ozaki, S.; Kondo, Y.; Shiotani, N.; Ogasawara, T.;
Watanabe, Y. J. Chem. Soc., Perkin Trans. 1 1992,
729.
We are currently exploring the derivatization of T-myo-
inositol pentakisphosphate (T-IP5 (2)) with fluorescent
markers (at the amine position of the linker) for probing
the surface of minerals (e.g., goethite) or perhaps for use
in biological studies where phytate presence has impor-
tant biological implications.29
Acknowledgements
23. Lehrfeld, J. J. Agric. Food Chem. 1994, 42, 2726.
24. Bencini, D. A.; Wild, J. R.; OÕDonovan, G. A. Anal.
Biochem. 1983, 132, 254.
We thank Hubert L. Walker, Jr. for his assistance in
conducting the enzymatic studies.
25. Wyss, M.; Brugger, R.; Kronenberger, A.; Remy, R.;
Fimbel, R.; Oesterhelt, G.; Lehmann, M.; van Loon, A. P.
G. M. Appl. Environ. Microbiol. 1999, 65, 367.
26. Ullah, A. H. J.; Phillippy, B. Q. Prep. Biochem. 1988, 18,
483.
27. Ullah, A. H. J. Prep. Biochem. 1988, 18, 459.
28. Rossolini, G. M.; Schippa, S.; Riccio, M. L.; Berlutti, F.;
Macaskie, L. E.; Thaller, M. C. Cell. Mol. Life Sci. 1998,
54, 833.
Supplementary data
Selected characterization data for compounds 4, 6, 7, 8,
and 2 along with HPLC protocol. The supplementary
data is available online with the paper in ScienceDirect.
Supplementary data associated with this article can be
29. Morey, J.; Orell, M.; Barcelo, M. A.; Deya, P. M.; Costa,
A.; Ballester, P. Tetrahedron Lett. 2004, 45, 1261.