Functional SWNT Nanohybrids
A R T I C L E S
mobility s with values that are 25% higher than in any other
known semiconductor material s further strengthens this as-
sumption.9 Thus, SWNTs may find a prominent place in electro-
and photoactive nanocomposites with high surface areas s just
as other carbon modifications/allotropes have been tested
successfully as electron acceptors in recent research.10 However,
before SWNT may be integrated into functional arrays (i.e.,
donor-acceptor nanohybrids) or tested in practical applications
(i.e., photovoltaic devices), several key issues need to be
properly addressed. One of them entails the control over
modifying the SWNT surface with functional groups, such as
chromophores,11 electron donors,12 biomolecules, etc.13
High degrees of functionalization alter appreciably the
π-electronic structure and, subsequently, the properties of
SWNT.14 On one hand, the shape and size of functionalized
SWNT are largely retained. On the other hand, each cyclo-
addition step eliminates an equal number of π-electrons from
the curved surface,15 though the electronic structure of the
carbon framework is governed by the graphenic π-electrons.16
Thus, SWNT functionalization corresponds to doping, which
affects (i) the band gaps and (ii) the long-range conjugation.17
With an eye on keeping the electronic properties of SWNT
intact, alternative strategies are needed to develop donor-
acceptor SWNT nanohybrids. In particular, concepts should be
considered that assist in controlling contacts between electron
donors and electron acceptors while preserving the π-electronic
structure of SWNT. Supramolecular concepts fulfill such
requisites. Additional incentives that call for supramolecular
means (i.e., polymer wrapping, π-π interactions, etc.) are their
flexibility and tunability.18,19
We have shown earlier that cationic and anionic porphyrins
form ensembles with charged fullerene and SWNT deriva-
tives.10e,19b,20 Interestingly, electrostatic forces play crucial roles
in maintaining the tertiary and quarternary structure of enzymes
and also in their interactions with other biomolecules.21 An
excellent example is the hybridization of cytochrome c with
cytochrome c oxidase. As the terminal enzyme in the respiratory
chain, cytochrome c oxidase catalyzes the reduction of dioxygen
to water and pumps an additional proton across the membrane
for each proton consumed in the reaction.22 Although supramo-
lecular complexes of charged metalloporphyrins and SWNT are
certainly no models for heme-containing enzymes, it is reason-
able to assume that chemical processes happening in such
proteins can be performed in electrostatic SWNT/metallopor-
phyrin aggregates. The electron-accepting and/or charging
properties of SWNT hint at the possibility of an oxidation
catalysis of these aggregates, with the metalloporphyrin acting
as the reaction center and the SWNT ensuring the necessary
(9) Du¨rkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S. Nano Lett. 2004, 4, 35.
(10) (a) Imahori, H.; Sakata, Y. AdV. Mater. 1997, 9, 537. (b) Prato, M. J. Mater.
Chem. 1997, 7, 1097. (c) Mart´ın, N.; Sa´nchez, L.; Illescas, B.; Pe´rez, I.
Chem. ReV. 1998, 98, 2527. (d) Diederich, F.; Gomez-Lopez, M. Chem.
Soc. ReV. 1999, 28, 263. (e) Imahori, H.; Sakata, Y. Eur. J. Org. Chem.
1999, 2445. (f) Guldi, D. M. Chem. Commun. 2000, 321. (g) Guldi, D.
M.; Prato, M. Acc. Chem. Res. 2000, 33, 695. (h) Gust, D.; Moore, T. A.;
Moore, A. L. Acc. Chem. Res. 2001, 34, 40. (i) Guldi, D. M. Chem. Soc.
ReV. 2002, 31, 22. (j) Guldi, D. M.; Prato, M. Chem. Commun. 2004, 2517.
(k) Segura, J. L.; Mart´ın, N.; Guldi, D. M. Chem. Soc. ReV. 2005, 34, 31.
(11) (a) Qu, L. W.; Martin, R. B.; Huang, W. J.; Fu, K. F.; Zweifel, D.; Lin,
Y.; Sun, Y. P.; Bunker, C. E.; Harruff, B. A.; Gord, J. R.; Allard, L. F. J.
Chem. Phys. 2002, 117, 8089. (b) Georgakilas, V.; Kordatos, K.; Prato,
M.; Guldi, D. M.; Holzinger, M.; Hirsch, A. J. Am. Chem. Soc. 2002, 124,
760. (c) Murakami, H.; Nomura, T.; Nakashima, N. Chem. Phys. Lett. 2003,
378, 481. (d) Li, H.; Zhou, B.; Lin, Y.; Gu, L.; Wang, W.; Fernando, K.
A. S.; Kumar, S.; Allard, L. F.; Sun, Y.-P. J. Am. Chem. Soc. 2004, 126,
1014. (e) Alvaro, M.; Atienzar, P.; de la Cruz, P.; Delgado, J. L.; Garcia,
H.; Langa, F. J. Phys. Chem. B 2004, 108, 12691. (f) Martin, R. B.; Qu,
L. W.; Lin, Y.; Harruff, B. A.; Bunker, C. E.; Gord, J. R.; Allard, L. F.;
Sun, Y. P. J. Phys. Chem. B 2004, 108, 11447. (g) Alvaro, M.; Atienzar,
P.; Bourdelande, J. L.; Garcia, H. Chem. Phys. Lett. 2004, 384, 119.
(12) (a) Kymakis, E.; Amaratunga, G. A. J. Appl. Phys. Lett. 2002, 80, 112. (b)
Kymakis, E.; Amaratunga, G. A. J. Sol. Energy Mater. Sol. Cells 2003,
80, 465. (c) Kymakis, E.; Alexandrou, I. J. Appl. Phys. 2003, 93, 1764.
(d) Yang, C.; Wohlgenannt, M.; Vardeny, Z. V.; Blau, W. J.; Dalton, A.
B.; Baughman, R.; Zakhidov, A. A. Physica B 2003, 338, 366. (e) Sheeney-
Hai-Ichia, L.; Basnar, B.; Willner, I. Angew. Chem., Int. Ed. 2005, 44, 78.
(13) (a) Chen, R. J.; Zhang, Y.; Wang, D.; Dai, H. J. Am. Chem. Soc. 2001,
123, 3838. (b) Shim, M.; Kim, N. W. S.; Chen, R. J.; Li, Y.; Dai, H. Nano
Lett. 2002, 2, 285. (c) Pantarotto, D.; Partidos, C. D.; Graff, R.; Hoebeke,
J.; Briand, J.-P.; Prato, M.; Bianco, A. J. Am. Chem. Soc. 2003, 125, 6160.
(d) Chou, S. G.; Ribeiro, H. B.; Barros, E. B.; Santos, A. P.; Nezich, D.;
Samsonidze, G. G.; Fantini, C.; Pimenta, M. A.; Jorio, A.; Plentz, F.;
Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Zheng, M.; Onoa, G. B.;
Semke, E. D.; Swan, A. K.; Unlu, M. S.; Goldberg, B. B. Chem. Phys.
Lett. 2004, 397, 296. (e) Yeh, I. C.; Hummer, G. Proc. Natl. Acad. Sci.
2004, 101, 12177. (f) Lin, Y.; Taylor, S.; Li, H. P.; Fernando, K. A. S.;
Qu, L. W.; Wang, W.; Gu, L. R.; Zhou, B.; Sun, Y. P. J. Mater. Chem.
2004, 14, 527. (g) Zheng, M.; Jagota, A.; Strano, M. S.; Santos, A. P.;
Barone, P.; Chou, S. G.; Diner, B. A.; Dresselhaus, M. S.; McLean, R. S.;
Onoa, G. B.; Samsonidze, G. G.; Semke, E. D.; Usrey, M.; Walls, D. J.
Science 2004, 302, 1545.
(14) (a) Dillon, A. C.; Gennett, T.; Jones, K. M.; Alleman, J. L.; Parilla, P. A.;
Heben, M. J. AdV. Mater. 1999, 11, 1354. (b) Chiang, W.; Brinson, B. E.;
Smalley, R. E.; Margrave, J. L.; Hauge, R. H. J. Phys. Chem. B 2001, 105,
1157. (c) Strano, M. S.; Dyke, C. A.; Usrey, M. L.; Barone, P. W.; Allen,
M. J.; Shan, H.; Kittrell, C.; Hauge, R. H.; Tour, J. M.; Smalley, R. E.
Science 2003, 301, 1519. (d) Zurek, E.; Autschbach, J. J. Am. Chem. Soc.
2004, 120, 13079.
(15) (a) Georgakilas, V.; Voulgaris, D.; Vazquez, E.; Prato, M.; Guldi, D. M.;
Kukovecz, A.; Kuzmany, H. J. Am. Chem. Soc. 2002, 124, 14318. (b) Guldi,
D. M.; Holzinger, M.; Hirsch, A.; Georgakilas, V.; Prato, M. Chem.
Commun. 2003, 1130.
(16) (a) Chico, L.; Crespi, V. H.; Benedict, L. X.; Louie, S. G.; Cohen, M. L.
Phys. ReV. Lett. 1996, 76, 971. (b) Carroll, D. L.; Redlich, P.; Ajayan, P.
M.; Charlier, J. C.; Blase´, X.; DeVita, A.; Car, R. Phys. ReV. Lett. 1997,
78, 2811. (c) Maarouf, A. A.; Kane, C. L.; Mele, E. J. Phys. ReV. 2000,
61, 11156. (d) Lemay, S. G.; Janssen, J. W.; van den Hout, M.; Mooij, M.;
Bronikowski, M. J.; Willis, P. A.; Smalley, R. E.; Kouwenhoven, L. P.;
Dekker: C. Nature 2001, 412, 617. (e) Avouris, P. Chem. Phys. 2002,
281, 429. (f) Brandbyge, M.; Mozos, J. L.; Ordejon, P.; Taylor, J.; Stokbro,
K. Phys. ReV. B 2002, 65, 165401.
(17) Melle-Franco, M.; Marcaccio, M.; Paolucci, D.; Paolucci, F.; Georgakilas,
V.; Guldi, D. M.; Prato, M.; Zerbetto, F. J. Am. Chem. Soc. 2004, 126,
1646.
(18) (a) Hamon, M. A.; Chen, J.; Hu, H.; Chen, Y.; Itkis, M. E.; Rao, A. M.;
Eklund, R. C.; Haddon, R. C. AdV. Mater. 1999, 11, 834. (b) Tang, B. Z.;
Xu, H. Macromolecules 1999, 32, 2569. (c) Coleman, J. N.; Dalton, A.
B.; Curran, S.; Rubio, A.; Davey, A. P.; Drury, A.; McCarthy, B.; Lahr,
B.; Ajayan, P. M.; Roth, S.; Barklie, R. C.; Blau, W. J. AdV. Mater. 2000,
12, 213. (d) Dalton, A. B.; Stephan, C.; Coleman, J. N.; McCarthy, B.;
Ajayan, P. M.; Lefrant, S.; Bernier, P.; Blau, W. J. J. Phys. Chem. 2000,
104, 10012. (e) Star, A.; Stoddart, J. F.; Steuerman, D.; Dile, M.; Boukai,
A.; Wong, E. W.; Yang, X.; Cheng, S. W.; Choi, H.; Heath, J. R. Angew.
Chem., Int. Ed. 2001, 40, 1721. (f) Chen, J.; Liu, H. Y.; Weimer, W. A.;
Halls, M. D.; Waldeck, D. H.; Walker, G. C. J. Am. Chem. Soc. 2002,
124, 9034. (g) Star, A.; Steuerman, D. W.; Heath, J. R.; Stoddart, J. F.
Angew. Chem., Int. Ed. 2002, 41, 2508. (h) Star, A.; Liu, Y.; Grant, K.;
Ridvan, L.; Stoddart, J. F.; Steuerman, D. W.; Diehl, M. R.; Boukai, A.;
Heath, J. R. Macromolecules 2003, 36, 553. (i) Numata, M.; Asai, M.;
Kaneko, K.; Hasegawa, T.; Fujita, N.; Kitada, Y.; Sakurai, K.; Shinkai, S.
Chem. Lett. 2004, 33, 232. (j) Guldi, D. M.; Taieb, H.; Rahman, G. M. A.;
Tagmatarchis, N.; Prato, M. AdV. Mater. 2005, 17, 871.
(19) (a) Nakashima, N.; Tomonari, Y.; Murakami, H. Chem. Lett. 2002, 638.
(b) Guldi, D. M.; Rahman, G. M. A.; Tagmatarchis, N.; Prato, M. Angew.
Chem., Int. Ed. 2004, 43, 5526. (c) Artyukhin, A. B.; Bakajin, O.; Stroeve,
P.; Noy, A. Langmuir 2004, 20, 1442. (d) Fifield, L. S.; Dalton, L. R.;
Addleman, R. S.; Galhotra, R. A.; Engelhard, M. H.; Fryxell, G. E.; Aardahl,
C. L. J. Phys. Chem. B 2004, 108, 8737. (e) Zhu, J.; Yudasaka, M.; Zhang,
M. F.; Iijima, S. J. Phys. Chem. B 2004, 108, 11317.
(20) Balbinot, D.; Atalick, S.; Guldi, D. M.; Hatzimarinaki, M.; Hirsch, A.;
Jux, N. J. Phys. Chem. B 2003, 107, 13273.
(21) (a) Isied, S. S.; Worosila, G.; Artherton, S. J. J. Am. Chem. Soc. 1982,
104, 7659. (b) Isied, S. S. ACS AdV. Chem. Ser. 1997, 253, 331. (c)
McArdle, J. V.; Gray, H. B.; Creutz, C.; Sutin, N. J. Am. Chem. Soc. 1974,
96, 5737. (d) McArdle, J. V.; Yocon, K.; Gray, H. B. J. Am. Chem. Soc.
1977, 12, 4141. (e) Meier, M.; Van Eldik, R. Inorg. Chim. Acta 1994,
225, 95. (f) Meier, M.; Van Eldik, R.; Chang, I. J.; Mines, G. A.; Wuttke,
D. S.; Winkler, J. R.; Gray, H. B. J. Am. Chem. Soc. 1994, 116, 1577. (g)
Meier, M.; Sun, J.; Ban Eldik, R.; Wishart, J. F. Inorg. Chem. 1996, 35,
1564. (h) Meier, M.; Van Eldik, R. Inorg. Chim. Acta 1996, 242, 185. (i)
Meier, M.; Van Eldik, R. Chem. Eur. J. 1997, 3, 39. (j) Jain, R. K.;
Hamilton, A. D. Angew. Chem., Int. Ed. 2002, 41, 641. (k) Decher, G.
Science 1997, 277, 1232. (l) Kaschak, D. M.; Lean, J.-T.; Waraksa, C. C.;
Saupe, G. B.; Usami, H.; Mallouk, T. E. J. Am. Chem. Soc. 1999, 121,
3435.
(22) (a) FergusonMiller, S.; Babcock, G. T. Chem. ReV. 1996, 96, 2889. (b)
Ostermeier, C.; Iwata, S.; Michel, H. Curr. Opin. Struct. Biol. 1996, 6,
460. (c) Hill, B. C. J. Biol. Chem. 1994, 269, 2419.
9
J. AM. CHEM. SOC. VOL. 127, NO. 27, 2005 9831