ORGANIC
LETTERS
2005
Vol. 7, No. 15
3299-3301
Synthesis of 2H-1,2-Oxaphosphorin
2-Oxides via Ag2CO3-Catalyzed
Cyclization of
(Z)-2-Alken-4-ynylphosphonic
Monoesters
Ai-Yun Peng and Yi-Xiang Ding*
Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences,
354 Fenglin Lu, Shanghai, 200032, China
Received May 15, 2005
ABSTRACT
Six new 2-ethoxy-2H-1,2-oxaphosphorin 2-oxides were synthesized with high regioselectivity in good yields via Ag2CO3-catalyzed cyclization
of (Z)-2-alken-4-ynylphosphonic monoesters in CH2Cl2 at room temperature. This cyclization of P-OH to substituted alkynes is reported for the
first time. The products are a class of phosphorus heterocycles with potential use and are heretofore prepared with difficulty.
2-Pyrones are important structural subunits in a wide variety
of biologically active natural products,1 as well as useful
versatile synthetic intermediates.2 Recently, the activity of
2-pyrones as potent HIV protease inhibitors1c invoked
additional interest in the investigation of 2-pyrones and their
analogues. Since there is a remarkable similarity in reactivity
and bioactivities between the carbon species and their
phosphorus counterparts,3 one would anticipate that phos-
phorus 2-pyrone analogues might have potential bioactivities
similar to those of the 2-pyrones reported herein.
However, so far, only five phosphorus 2-pyrone analogues
have been reported in the literature (compounds 1-5, Figure
1). In 1978, Razumov et al. reported the synthesis of 1 and
2 via intermolecular aldol condensation followed by thermal
cyclization reactions.4 In the same year, Sigal et al. prepared
3 by addition of bromine to mesityl-2-butenylphostinate
followed by dehydrobromination.5 In 2002, Cremer et al.6
prepared a mixture of 4 and 5 through a bromination-
dehydrobromination sequence (4 steps) from the correspond-
ing saturated phostone. Unfortunately, the scope of the above
methods has not been examined, and they usually suffer from
low yields and lengthy procedures. Thus, new and improved
methodologies for synthesis of phosphorus 2-pyrone ana-
logues are merited.
(1) (a) Claydon, N.; Asllan, M.; Hanson, J. R.; Avent, A. G. Trans. Br.
Mycol. Soc. 1987, 88, 503. (b) Barrero, A. F.; Oltra, J. E.; Herrador, M.
M.; Sanchez, J. F.; Quilez, J. F.; Rojas, F. J.; Reyes, J. F. Tetrahedron
1993, 49, 141. (c) Vara Prasad, J. V. N.; Para, K. S.; Lunney, E. A.; Ortwine,
D. F.; Dunbar, J. B., Jr.; Fergunson, D.; Tummino, P. J.; Hupe, D.; Tait, B.
D.; Domagala, J. M.; Humblet, C.; Bhat, T. N.; Liu, B.; Guerin, D. A. M.;
Baldwin, E. T.; Erickson, J. W.; Sawyer, T. K. J. Am. Chem. Soc. 1994,
116, 6989. (d) Shi, X.; Leal, W. S.; Liu, Z.; Schrader, E.; Meinwald, J.
Tetrahedron Lett. 1995, 36, 71. (e) Gehrt, A.; Erkel, G.; Anke, T.; Sterner,
O. Z. Naturforsch. 1998, 53c, 89. (f) Schlingmann, G.; Milne, L.; Carter,
G. T. Tetrahedron 1998, 54, 13013.
(2) (a) Okamura, H.; Shimizu, H.; Iwagawa, T.; Nakatani, M. Tetrahedron
Lett. 2000, 41, 4147. (b) Posner, G. H.; Lee, J. K.; White, M. W.; Hutchings,
R. H.; Dai, H.; Kachinski, J. L.; Kensler, T. W. J. Org. Chem. 1997, 62,
3299. (c) Posner, G. H.; Cho, C.-G.; Anjeh, T. E. N.; Johnson, N.; Horst,
R. L.; Kobayashi, T.; Okano, T.; Tsugawa, N. J. Org. Chem. 1995, 60,
4617.
Building on methodology that has recently been developed
in our group to synthesize phosphaisocoumarins by Cu(I)-
catalyzed cyclization of 2-(1-alkynyl)phenylphosphonic mono-
(3) (a) Dillon, K. B.; Mathey, F.; Nixon FRS, J. F. Phosphorus: The
Carbon Copy; John Wiley & Sons: Chichester, 1998. (b) Quin, L. D. A
Guide to Organophosphorus Chemistry; John Wiley & Sons: New York,
2000; Chapter 11.
(4) Razumov, A. I.; Liorber, B. G.; Sokolov, M. P.; Zykova, T. V.;
Salakhutdinov, R. A. Zh. Obshch. Khim. 1978, 48, 51.
(5) Sigal, I.; Loew, L. J. Am. Chem. Soc. 1978, 100, 6394.
(6) Polozov, A. M.; Cremer, S. E. J. Organomet. Chem. 2002, 646, 153.
10.1021/ol051126+ CCC: $30.25
© 2005 American Chemical Society
Published on Web 06/24/2005