Scheme 1. Synthesis of OES-b-OEK 1 and Chemical Structure of OEK-b-OES-b-OEK 2
ever, have been made to study wholly aromatic rigid-rod
methods such as living radical polymerization7 and atom
transfer radical polymerization.8 However, it is difficult to
synthesize block architechtures in condensation polymers as
they are typically prepared by a step-growth mechanism.
While Yokozawa et al. have developed a polymerization
method of chain-growth polycondensation to yield condensa-
tion block copolymers based on aromatic polyamides with
a narrow molecular distribution,9 it is still too limited in scope
to access polymers desired for this study. Thus, the well-
defined di- and triblock molecules of OES-b-OEK and OEK-
b-OES-b-OEK were synthesized by stepwise aromatic nu-
cleophilic substitution and deprotection reactions (Scheme
1). For constructing OES and OEK segments, we first
synthesized 4-fluoro-4′-(4′′-methoxyphenyloxy)diphenyl sul-
fone (3) and 4-fluoro-4′-(4′′-methoxyphenyloxy)diphenyl
ketone (4) as building molecules from 4,4′-difluoro diphenyl
sulfone or ketone and 4-methoxyphenol, respectively. For
synthesis of diblock OES-b-OEK (1), 5 was prepared from
3 and tert-butyl phenol with subsequent deprotection of the
methoxy group by boron tribromide to access the next
nucleophile.
block molecules, namely, rod-rod-type block molecules.5
Wang et al.5b developed rod-rod conjugated diblock co-
polymers of alkyl-substituted oligo(phenylenevinylene)-b-
oligothiophene that self-assembled to lamellae. The study
of wholly aromatic rod-rod type block molecules is essential
not only for fundamental understanding but also to generate
novel self-assembling nanomaterials with intriguing proper-
ties from a variety of conventional, but little studied, wholly
aromatic condensation polymers. Herein, we report synthesis
and self-assembly of wholly aromatic oligo(ether sulfone)
(OES) and oligo(ether ketone) (OEK) di- and triblock co-
oligomers (OES-b-OEK and OEK-b-OES-b-OEK). Amor-
phous aromatic poly(ether sulfone)s and crystalline poly(ether
ketone)s are well-known super-engineering plastics. Crystal-
lization of the block OEK oligomers is expected to induce
nanostructure formation in the solid state. Characterization
of crystalline nanostructures can be carried out by using wide
and small-angle X-ray scattering (WAXS and SAXS) and
energy-filtering transmission electron microscope (EFTEM).6
Well-defined block co-oligomers and copolymers have
been prepared by a variety of facile and reliable synthetic
The aromatic nucleophilic substitution reaction of 6 with
3 was carried out in the presence of potassium carbonate in
(4) (a) Lee, M.; Cho, B.-K.; Zin, W.-C. Chem. ReV. 2001, 101, 3869.
(b) Widawski, G.; Rawiso, M.; Franc¸ois, B. Nature 1994, 369, 387. (c)
Jenekhe, S. A.; Chen, X. L. Science 1999, 283, 372. (d) Stupp, S. I.;
LeBonheur, V.; Walker, K.; Li, L. S.; Huggins, K. E.; Keser, M.; Amstutz,
A. Science 1997, 276, 384. (e) Sone, E. D.; Zubarev, E. R.; Stupp, S. I.
Angew. Chem., Int. Ed. 2002, 41, 1706. (f) Hayakawa, T.; Horiuchi, S.
Angew. Chem., Int. Ed. 2003, 42, 2285. (g) Hayakawa, T.; Yokoyama, H.
Langmuir 2005, 21, 10288. (h) Hayakawa, T.; Seino, M.; Goseki, R.; Hirai,
T.; Kikuchi, R.; Kakimoto, M.; Tokita, M.; Yokoyama, H.; Horiuchi, S.
Polym. J. 2006, 38 (6), 567. (i) Schleuss, T. W.; Abbel, R.; Gross, M.;
Schollmeyer, D.; Frey, H.; Maskos, M.; Berger, R.; Kilbinger, A. F. M.
Angew. Chem., Int. Ed. 2006, 45, 2969.
(6) (a) Horiuchi, S.; Harada, T.; Yase, K.; Ougizawa, T. Macromolecules
1999, 32, 1312. (b) Horiuchi, S.; Fujita, T.; Hayakawa, T.; Nakao, Y.
Langmuir 2003, 19, 2963. (c) Horiuchi, S.; Dohi, H. Langmuir 2006, 22,
4607. (d) Hofer, P.; Warbichler, P. In Transmission Electron Energy Loss
Spectroscopy in Material Science and the EELS ATLAS, 2nd ed.; Ahn, C.,
Ed.; Wiley-VCH: Weinheim, 2004; Chapter 6.
(7) (a) Kamigaito, M.; Ando, T.; Sawamoto, M. Chem. ReV. 2001, 101,
3689. (b) Hawker, C. J.; Bosman, A. W.; Harth, E. Chem. ReV. 2001, 101,
3661.
(8) Matyjaszewski, K.; Xia, J. Chem. ReV. 2001, 101, 2921.
(9) (a) Yokozawa, T.; Ogawa, M.; Sekino, A.; Sugi, R.; Yokoyama, A.
J. Am. Chem. Soc. 2002, 124, 15158. (b) Sugi, R.; Yokoyama, A.; Furuyama,
T.; Uchiyama, M.; Yokozawa, T. J. Am. Chem. Soc. 2005, 127, 10172.
(5) (a) Chen, X. L.; Jenekhe, S. A. Macromolecules 1996, 29, 6189. (b)
Wang, H.; Ng, M-K.; Wang, L.; Yu, L.; Lin, B.; Meron, M.; Xiao, Y. Chem.
Eur. J. 2002, 8 (14), 3246.
5454
Org. Lett., Vol. 8, No. 24, 2006