In this paper, we describe a practical synthesis of 3,3-
difluoropyrrolidine (Scheme 1). This synthesis features
two efficient through processes: (1) a Claisen rearrange-
ment of 1 followed by a Ru(VIII)-catalyzed oxidation of
2 to prepare 2,2-difluorosuccinic acid (3) and (2) an
efficient cyclization to form N-benzyl-3,3-difluoropyrro-
lidinone (5) followed by BH3‚Me2S reduction. In compari-
son to the literature synthesis,4 this chromatography-free
route only requires isolating two crystalline solid inter-
mediates 3 and 6, employs inexpensive and readily
available starting materials, and avoids using expensive
and unstable fluorinating reagents such as DAST.
Practical Preparation of
3,3-Difluoropyrrolidine
Feng Xu,* Bryon Simmons, Joseph Armstrong III, and
Jerry Murry
Department of Process Research, Merck Research
Laboratories, Rahway, New Jersey 07065
Received March 23, 2005
2,2-Difluorosuccinic acid6 (3) is an expensive com-
mercial product (Lancaster, $165/5 g) and is not available
in large quantity. The literature-known preparation7 of
2,2-difluorosuccinic acid is also not suitable for large-scale
preparation and requires using 1,1-dichloroethene and
1-chloro-1,2,2-trifluoroethene gas. We envisioned that 3
is a suitable intermediate for the preparation of 3,3-
difluoropyrrolidine. As reported, 2 could be prepared from
ester 1.8
To overcome the workup issues associated with the
volatile intermediates (1 and 2,2-difluoropent-4-enoic acid
from hydrolysis of 2, vide infra) and avoid isolation of 1
and 2, we first developed an efficient through process to
A practical and cost-effective synthesis of 3,3-difluoropyr-
rolidine is reported. The synthesis involves the isolation of
two intermediates, which are prepared via two efficient
through processes: (1) a Claisen rearrangement followed by
a Ru(VIII)-catalyzed oxidation to prepare the 2,2-difluoro-
succinic acid and (2) an efficient cyclization to form N-benzyl-
3,3-difluoropyrrolidinone followed by BH3‚Me2S reduction.
In recognition of the high electronegativity of fluorine,
the strong C-F bond, and its unique capabilities such
as increasing lipid solubility and inhibiting the enzymatic
recognition process by C-F bonding, etc., it has become
popular in the pharmaceutical industry to introduce/
incorporate fluorine into an organic molecule in attempts
to significantly improve the drug candidates’ biological
activities and metabolic stability.1 Although the applica-
tion of small building blocks containing gem-difluoro
moieties continues to receive attention,2 the preparation
of these small molecules is not always efficient and
practical. Specifically, the 3,3-difluoropyrrolidine moiety
has recently been incorporated in pharmacologically
active substances;3 however, the literature synthesis4
involves DAST fluorination of 3-pyrrolidinone, the latter
of which is derived from the expensive chiral 3-hydroxy-
pyrrolidine. Neither of these compounds are ideal for
large-scale preparation in terms of cost and safety issues.5
For our specific research interests, we required a cost-
effective, safe synthesis of 3,3-difluoropyrrolidine that
was amenable to large-scale preparation.
(3) For recent examples, see: (a) Wilson, D. M.; Termin, A. P.;
Neubert, T. D. PCT Int. Appl. WO2005014558, 2005. (b) Hennequin,
L. F. A. PCT Int. Appl. WO2005013998, 2005. (c) Nelson, M. L.;
Ohemeng, K.; Amoo, V.; Kim, O.; Abato, P.; Assefa, H.; Berniac, J.;
Bhatia, B.; Bowser, T.; Chen, J.; Grier, M.; Hohos, A.; Honeyman, L.;
Ismail, M. Y.; Mechiche, R.; Nihlawi, M.; Sizensky, E. PCT Int. Appl.
WO2005009943, 2005. (d) Kadereit, D.; Defossa, E.; Schoenafinger, K.;
Klabunde, T.; Herling, A. German patent DE10335092, 2005. (e) Chan,
C. K.; Zhang, M.-Q.; Moinet, C.; Proulx, M.; Reddy, T. J.; Courchesne,
M. PCT Int. Appl. WO2005007656, 2005. (f) Caldwell, C. G.; Chen, P.;
He, J.; Parmee, E. R.; Leiting, B.; Marsilio, F.; Patel, R. A.; Wu, J. K.;
Eiermann, G. J.; Petrov, A.; He, H.; Lyons, K. A.; Thornberry, N. A.;
Weber, A. E. Bioorg. Med. Chem. Lett. 2004, 14, 1265-1268. (g) Duffy,
J. L.; Mathvink, R. J.; Weber, A. E.; Xu, J. PCT Int. Appl. WO200405-
0022, 2004. (h) Hulin, B. PCT Int. Appl. WO2004046106, 2004. (i)
Colandrea, V. J.; Edmondson, S. D.; Mathvink, R. J.; Mastracchio, A.;
Weber, A. E.; Xu, J. PCT Int. Appl. WO2004043940, 2004. (j) Ancliff,
R.; Eldred, C. D.; Fogden, Y. C.; Hancock, A. P.; Heightman, T. D.;
Hobbs, H.; Hodgson, S. T.; Lindon, M. J.; Wilson, D. M. PCT Int. Appl.
WO2004035556, 2004. (k) Churcher, I.; Harrison, T.; Kerrad, S.;
Oakley, P. J.; Shaw, D. E.; Teall, M. R.; Williams, S. PCT Int. Appl.
WO2004031137, 2004. (l) Shiraishi, M.; Hara, T.; Kusaka, M.; Kanzaki,
N.; Yamamoto, S.; Miyawaki, T. PCT Int. Appl. WO2004016576, 2004.
(m) Gonzales, J. E., III; Wilson, D. M.; Termin, A. P.; Grootenhuis, P.
D. J.; Zhang, Y.; Petzoldt, B. J.; Fanning, L. T. D.; Neubert, T. D.;
Tung, R. D.; Martinborough, E.; Zimmermann, N. PCT Int. Appl.
WO2004078733, 2004.
(4) Giardina, G.; Dondio, G.; Grugni, M. Synlett 1995, 55-57.
(5) For a recent review, see: Tozer, M. J.; Herpin, T. F. Tetrahedron
1996, 52, 8619-8683.
(1) For recent reviews, see: (a) Bo¨hm, H.-J.; Banner, D.; Bendels,
S.; Kansy, M.; Kuhn, B.; Mu¨ller, K.; Obst-Sander, U.; Stahl, M.
ChemBioChem 2004, 5, 637-643. (b) Houben-Weyl Methods of Organic
Chemistry, workbench edition; Georg Thieme Verlag: Stuttgart,
Germany, 2000; Vols. E10a-c. (c) Hiyama, T. Organofluorine Com-
pounds; Springer: Berlin, Germany, 2000. (d) Banks, R. E.; Smart, B.
E.; Tatlow, J. C. Organofluorine Chemistry: Principles and Commercial
Applications; Plenum Press: New York, 1994.
(2) For recent examples, see: (a) Mae, M.; Hong, J. A.; Hammond,
G. B.; Uneyama, K. Tetrahedron Lett. 2005, 46, 1787-1789. (b) Boydell,
A. J.; Vinader, V.; Linclau, B. Angew. Chem., Int. Ed. 2004, 43, 5677-
5679. (c) Suzuki, A.; Mae, M.; Amii, H.; Uneyama, K. J. Org. Chem.
2004, 69, 5132-5134. (d). Wu, Y.-Y.; Zhang, X.; Meng, W.-D.; Qing,
F.-L. Org. Lett. 2004, 6, 3941-3944. (e) Uneyama, K.; Tanaka, H.;
Kobayashi, S.; Shioyama, M.; Amii, H. Org. Lett. 2004, 6, 2733-2736.
(f) Sekiguchi, T.; Sato, K.; Ishihara, T.; Konno, T.; Yamanaka, H. Chem.
Lett. 2004, 33, 666-667.
(6) ,2-Difluorosuccinic acid is also a useful building block. For recent
applications, see: (a) Boros, E. E.; Samano, V.; Ray, J. A.; Thompson,
J. B.; Jung, D. K.; Kaldor, I.; Koble, C. S.; Martin, M. T.; Styles, V. L.;
Mook, R. A., Jr.; Feldman, P. L.; Savarese, J. J.; Belmont, M. R.;
Bigham, E. C.; Boswell, G. E.; Hashim, M. A.; Patel, S. S.; Wisowaty,
J. C.; Bowers, G. D.; Moseley, C. L.; Walsh, J. S.; Reese, M. J.;
Rutkowske, R. D.; Sefler, A. M.; Spitzer, T. D. J. Med. Chem. 2003,
46, 2502-2515. (b) Takeda, S.; Kagawa, H.; Aratani, K.; Miki, S. Jpn.
Kokai Tokkyo Koho JP2003201274, 2003. (c) Jorgensen, A. S.; Madsen,
P. PCT Int. Appl. WO2002040446, 2002.
(7) (a) Akhtar, M.; Botting, N. P.; Cohen, M. A.; Gani, D. Tetrahedron
1987, 43, 5899-5908. (b) Rassch, M. S.; Castle, J. E. Org. Synth. 1962,
42, 44-47. (c) Raasch, M. S.; Miegel, R. E.; Castle, J. E. J. Am. Chem.
Soc. 1959, 81, 2678-2680.
(8) Greuter, H.; Lang, R. W.; Romann, A. J. Tetrahedron Lett. 1988,
29, 3291-3294.
10.1021/jo050591h CCC: $30.25 © 2005 American Chemical Society
Published on Web 06/24/2005
J. Org. Chem. 2005, 70, 6105-6107
6105