(spectrophotometric grade) upto 50% (v/v) to a 80 mM aqueous
buffer solution adjusted with NaOH to the desired pH. Buffers
(MES, pH 5.6–7.0 and HEPES, pH 7.0–8.2) were obtained from
commercial sources and used without further purification in
18 MX Millipore deionized water. Stock solutions were freshly
prepared before performing the kinetic measurements. In a typical
experiment, preformed complex 7 (1040 lL, 10 mM in CH3CN)
was added to a cuvette containing 38 lL of CH3CN and 962.4 lL
of 173.25 mM aqueous buffer solution and thermostated at
25 ◦C. After a couple of minutes of equilibration time, HPNP
(41.6 lL, 100 mM in water) was injected and an increase in
the UV absorption at k = 400 nm due to the release of p-
nitrophenolate ion was recorded. All solutions remained clear
during the time of the kinetic measurements. In the absence of
ligand, precipitation of polymeric Zn(II) hydroxide took place.
The observed pseudo-first-order rate constants kobs (s−1) were
calculated with the extinction coefficient of p-nitrophenolate at
k = 400 nm by the initial slope method (<5% conversion).
The method of initial rates was used to study these reactions
as the catalyst was not stable for even one complete half-life
of the reaction in the presence of excess buffer. Solutions of p-
nitrophenolate in CH3CN–20 mM buffer 1 : 1 (v/v) were prepared
at various pH values. The molar extinction coefficient for p-
nitrophenolate at 400 nm was then determined from the plot of
absorbance against concentration. Correction for the spontaneous
hydrolysis of HPNP (less than 0.1%) was accomplished by direct
observation of the production of p-nitrophenolate relative to a
reference cell containing no metal complex. The pseudo-first-order
rate constants for the transesterification of HPNP in the absence
of the catalyst (kuncat/s−1) were measured with a 2.0 mM HPNP
solution by the method of initial rates. Each experiment was run
in triplicate. Agreement between the calculated initial rates for
replicate experiments was within 5%.
13 E. Hough, L. K. Hansen, B. Birknes, K. Jynge, S. Hansen, A. Hordvik,
C. Little, E. Dodson and Z. Derewenda, Nature, 1989, 338, 357.
14 C. Romier, R. Dominguez, A. Lahm, O. Dahl and D. Suck, Proteins,
1998, 32, 414.
15 A. Volbeda, A. Lahm, F. Sakiyama and D. Suck, EMBO J., 1991, 10,
1607.
16 C. G. Zhan and F. Zheng, J. Am. Chem. Soc., 2001, 123, 2835.
17 Z. G. Wang, W. Fast and S. J. Benkovic, Biochemistry, 1999, 38, 10013.
18 E. L. Hegg and J. N. Burstyn, Coord. Chem. Rev., 1998, 173, 133.
19 J. Weston, Chem. Rev., 2005, 105, 2151.
20 G. Parkin, Chem. Rev., 2004, 104, 699.
21 J. R. Morrow and O. Iranzo, Curr. Opin. Chem. Biol., 2004, 8, 192.
22 E. Kimura, Curr. Opin. Chem. Biol., 2000, 4, 207.
23 P. Molenveld, J. F. J. Engbersen and D. N. Reinhoudt, Chem. Soc. Rev.,
2000, 29, 75.
24 M. Komiyama and J. Sumaoka, Curr. Opin. Chem. Biol., 1998, 2, 751.
25 R. Breslow, Acc. Chem. Res., 1995, 28, 146.
26 P. Molenveld, W. M. G. Stikvoort, H. Kooijman, A. L. Spek, J. F. J.
Engbersen and D. N. Reinhoudt, J. Org. Chem., 1999, 64, 3896.
27 P. Molenveld, S. Kapsabelis, J. F. J. Engbersen and D. N. Reinhoudt,
J. Am. Chem. Soc., 1997, 119, 2948.
28 P. Molenveld, J. F. J. Engbersen and D. N. Reinhoudt, Eur. J. Org.
Chem., 1999, 3269.
29 O. Iranzo, A. Y. Kovalevsky, J. R. Morrow and J. P. Richard, J. Am.
Chem. Soc., 2003, 125, 1988.
30 K. P. McCue and J. R. Morrow, Inorg. Chem., 1999, 38, 6136.
31 T. Gajda, R. Kramer and A. Jancso, Eur. J. Inorg. Chem., 2000, 1635.
32 M. Yashiro, A. Ishikubo and M. Komiyama, J. Chem. Soc., Chem.
Commun., 1995, 1793.
33 P. Rossi, F. Felluga, P. Tecilla, F. Formaggio, M. Crisma, C. Toniolo
and P. Scrimin, J. Am. Chem. Soc., 1999, 121, 6948.
34 P. Rossi, F. Felluga, P. Tecilla, F. Formaggio, M. Crisma, C. Toniolo
and P. Scrimin, Biopolymers, 2000, 55, 496.
35 C. Sissi, P. Rossi, F. Felluga, F. Formaggio, M. Palumbo, P. Tecilla, C.
Toniolo and P. Scrimin, J. Am. Chem. Soc., 2001, 123, 3169.
36 A. Scarso, U. Scheffer, M. Gobel, Q. B. Broxterman, B. Kaptein, F.
Formaggio, C. Toniolo and P. Scrimin, Proc. Natl. Acad. Sci. USA,
2002, 99, 5144.
37 N. V. Kaminskaia, C. He and S. J. Lippard, Inorg. Chem., 2000, 39,
3365.
38 C. He and S. J. Lippard, J. Am. Chem. Soc., 2000, 122, 184.
39 A. M. Barrios and S. J. Lippard, Inorg. Chem., 2001, 40, 1060.
40 B. Bauer-Siebenlist, F. Meyer, E. Farkas, D. Vidovic, J. A. Cuesta-Seijo,
R. Herbst-Irmer and H. Pritzkow, Inorg. Chem., 2004, 43, 4189.
41 F. Meyer and P. Rutsch, Chem. Commun., 1998, 1037.
42 C. Bazzicalupi, A. Bencini, A. Bianchi, V. Fusi, L. Mazzanti, P. Paoletti
and B. Valtancoli, Inorg. Chem., 1995, 34, 3003.
43 C. Bazzicalupi, A. Bencini, A. Bianchi, V. Fusi, P. Paoletti and B.
Valtancoli, J. Chem. Soc., Chem. Commun., 1994, 881.
44 C. Bazzicalupi, A. Bencini, A. Bianchi, F. Corana, V. Fusi, C. Giorgi,
P. Paoli, P. Paoletti, B. Valtancoli and C. Zanchini, Inorg. Chem., 1996,
35, 5540.
Acknowledgements
We thank the National Science Foundation (Grant CHE-0316003)
for funding this research. We are especially grateful to Professor
David E. Richardson and Dr Kathryn R. Williams at the
University Of Florida for the use of instruments and for helpful
discussions. We also thank Daniel E. Denevan for his help with
the UV experiments.
45 C. Bazzicalupi, A. Bencini, A. Bianchi, V. Fusi, P. Paoletti and B.
Valtancoli, J. Chem. Soc., Chem. Commun., 1995, 1555.
46 C. Bazzicalupi, A. Bencini, A. Bianchi, V. Fusi, P. Paoletti, G. Piccardi
and B. Valtancoli, Inorg. Chem., 1995, 34, 5622.
47 C. Bazzicalupi, A. Bencini, A. Bianchi, V. Fusi, C. Giorgi, P. Paoletti,
B. Valtancoli and D. Zanchi, Inorg. Chem., 1997, 36, 2784.
48 A. Bencini, E. Berni, A. Bianchi, C. Giorgi and B. Valtancoli, Supramol.
Chem., 2001, 13, 489.
49 A. Bencini, E. Berni, A. Bianchi, V. Fedi, C. Giorgi, P. Paoletti and B.
Valtancoli, Inorg. Chem., 1999, 38, 6323.
50 C. Bazzicalupi, A. Bencini, E. Berni, A. Bianchi, V. Fedi, V. Fusi, C.
Giorgi, P. Paoletti and B. Valtancoli, Inorg. Chem., 1999, 38, 4115.
51 M. Yashiro, A. Ishikubo and M. Komiyama, Chem. Commun., 1997,
83.
52 C. Bazzicalupi, A. Bencini, E. Berni, C. Giorgi, S. Maoggi and B.
Valtancoli, Dalton Trans., 2003, 3574.
53 S. R. Korupoju, N. Mangayarkarasi, P. S. Zacharias, J. Mizuthani and
H. Nishihara, Inorg. Chem., 2002, 41, 4099.
54 M. B. Dinger and M. J. Scott, Eur. J. Org. Chem., 2000, 2467.
55 M. J. Plater, M. R. S. Foreman, T. Gelbrich and M. B. Hursthouse,
J. Chem. Soc., Dalton Trans., 2000, 1995.
References
1 F. H. Westheimer, Science, 1987, 235, 1173.
2 N. H. Williams, B. Takasaki, M. Wall and J. Chin, Acc. Chem. Res.,
1999, 32, 485.
3 N. Strater, W. N. Lipscomb, T. Klabunde and B. Krebs, Angew. Chem.,
Int. Ed. Engl., 1996, 35, 2024.
4 D. E. Wilcox, Chem. Rev., 1996, 96, 2435.
5 J. A. Cowan, Chem. Rev., 1998, 98, 1067.
6 M. J. Jedrzejas and P. Setlow, Chem. Rev., 2001, 101, 607.
7 M. M. Benning, H. Shim, F. M. Raushel and H. M. Holden,
Biochemistry, 2001, 40, 2712.
8 H. Shim and F. M. Raushel, Biochemistry, 2000, 39, 7357.
9 E. E. Kim and H. W. Wyckoff, J. Mol. Biol., 1991, 218, 449.
10 B. Stec, K. M. Holtz and E. R. Kantrowitz, J. Mol. Biol., 2000, 299,
1303.
11 S. Hansen, L. K. Hansen and E. Hough, J. Mol. Biol., 1993, 231, 870.
12 S. Hansen, L. Kristian, H. Hough and E. Hough, J. Mol. Biol., 1992,
225, 543.
56 S. Uhlenbrock, R. Wegner and B. Krebs, J. Chem. Soc., Dalton Trans.,
1996, 3731.
3934 | Dalton Trans., 2007, 3924–3935
This journal is
The Royal Society of Chemistry 2007
©