´
N. Dıaz et al. / Bioorg. Med. Chem. Lett. 15 (2005) 3844–3848
3848
16a and 16b were achieved through combination of 1D
and 2D experiments. 1D-NOESY confirmed the relative
trans stereochemistry of the methyl groups in carbons 30
and 40. See also Ref. 9.
of food consumed, as measured over 1- and 2-h time
periods. In contrast, oral administration of a 3 mg/kg
dose of LY255582 was inactive over the same time
periods.
13. LY255582 was enantiomerically pure, see Ref. 9.
14. Weidner, J. J.; Weintraub, P. M.; Schnettler, R. A.; Peet,
N. P. Tetrahedron 1997, 53, 6303.
15. Rodgers, G.; Hubert, C.; McKinzie, J.; Suter, T.; Statnick,
M.; Emmerson, P.; Stancato, L. Assay Drug Dev. Technol.
2003, 1, 627.
16. DeLapp, D. W.; McKinzie, J. H.; Sawyer, B. D.;
Vandergriff, A.; Falcone, J.; McClure, D.; Felder, C. C.
J. Pharmacol. Exp. Ther. 1999, 289, 946.
17. Kim, I. J.; Dersch, C. M.; Rothman, R. B.; Jacobson,
A. E.; Rice, K. C. Bioorg. Med. Chem. 2004, 12, 4543.
18. Patani, G. A.; LaVoie, E. J. Chem. Rev. 1996, 96, 3147.
19. Wentland, M. P.; Ye, Y.; Cioffi, C. L.; Rongliang, L.;
Zhou, Q.; Xu, G.; Duan, W.; Dehnhardt, C. M.; Sun, X.;
Cohen, D. J.; Bidlack, J. M. J. Med. Chem. 2003, 46, 838,
and literature cited therein.
5. Conclusions
From these early SAR findings, it seems reasonable to
conclude that the hydroxyl group on carbon 3 of the
aromatic ring of 1 plays an important role in binding
to opioid receptors. We have been successful in the bio-
isosteric replacement of the hydroxyl group by a carbox-
amide group (analog 12). Carbamates 8 also show high
receptor affinity. We have demonstrated that carboxam-
ide 12 improved the pharmacokinetic properties of
LY255582 and also was efficacious in reducing food
consumption in rats. Further evaluation of carboxamide
12 is on going.
20. Portoghese replaced the hydroxy group of opiate-derived
ligands by a sulfonamide group, the new analogs were
found inactive, see: McCurdy, C. R.; Jones, R. M.;
Portoghese, P. S. Org. Lett. 2000, 2, 819.
Acknowledgments
21. Hedberg, M. H.; Johansson, A. M.; Fowler, C. J.;
Terenius, L.; Hakcsell, U. Bioorg. Med. Chem. Lett.
1994, 4, 2527.
22. Kubota, H.; Tothman, R. B.; Dersch, C.; McCullough,
K.; Pinto, J.; Rice, K. C. Bioorg. Med. Chem. Lett. 1998, 8,
799.
´
We thank Pilar Lopez for the separation of compounds
2A, 2B, 3A and 3B and Paloma Vidal for the structural
elucidation of 16.
References and notes
23. Zhang, A.; Xiong, W.; Hilbert, J. E.; DeVita, E. K.;
Bidlack, J. M.; Neumeyer, J. L. J. Med. Chem. 2004, 47,
1886.
24. Wentland, M. P.; Lou, R.; Ye, Y.; Cohen, D. J.;
Richardson, G. P.; Bidlack, J. M. Bioorg. Med. Chem.
Lett. 2001, 11, 623.
1. Jaffe, J. H.; Martin, W. R. In Gilman, A. G., Goodman,
L. S., Rall, T. W., Murad, F., Eds., 7th ed.; Goodman and
GilmanÕs The Pharmacological Basis of Therapeutics;
Macmillan: New York, 1985, p 491.
25. Wentland, M. P.; Lou, R.; Dehnhardt, C. M.; Duan, W.;
Cohen, D. J.; Bidlack, J. M. Bioorg. Med. Chem. Lett.
2001, 11, 1717.
26. Le Bourdonnec, B.; Belanger, S.; Cassel, J. A.; Stabley, G.
J.; DeHaven, R. N.; Dolle, R. E. Bioorg. Med. Chem. Lett.
2003, 13, 4459.
2. Zimmerman, D. M.; Nickander, R.; Horng, J. S.; Wong,
D. T. Nature 1978, 279, 332.
3. Mitch, C. H.; Leander, J. D.; Mendelsohn, L. G.; Shaw,
W. N.; Wong, D. T.; Cantrell, B. E.; Johnson, B. G.; Reel,
J. K.; Snoddy, J. D.; Takemori, A. E.; Zimmerman, D. M.
J. Med. Chem. 1993, 36, 2842.
27. The tails of mice (n = 5/group) were immersed in a
water bath maintained at 55 ꢁC and the latency to
removal was measured. A baseline response latency was
determined, followed by administration of vehicle or a
dose of drug either sc or po then 30 min later a
postinjection latency was determined. If an animal did
not flick its tail within 10 s (cut-off time), it was
removed and assigned a response time of 10 s. For
each animal, the percentage maximum possible effect
was calculated using the following formula: [(postdrug
latency ꢀ predrug latency)/(cutoff time ꢀ predrug laten-
cy)] · 100. ED50 values were determined using a four-
parameter logistic equation.
28. The bioavailability was determined using Long–Evans rats
(n = 3). It was a crossover study (po ꢀ10 mg/kg to iv
ꢀ1 mg/kg). Formulation for oral arm: 1% CMC, 0.5%
SLS, 0.085% Povidone. Formulation for iv arm: 50%
PEG, 1% ethanol in saline.
29. The male Long–Evans rats had been fasted for 18 h prior
to testing. The weight of food consumed was measured for
groups of six rats treated with test substance and
compared to the food consumed by an untreated control
group of six animals.
4. (a) Shaw, W. N.; Mitch, C. H.; Leander, J. D.; Mendel-
sohn, L. G.; Zimmerman, D. M. Int. J. Obes. 1991, 15,
387; (b) Shaw, W. N. Pharmacol. Biochem. Behav. 1993,
46, 653.
5. Swanson, S. P.; Catlow, J.; Pohland, R. C.; Chay, S. H.;
Johnson, T. Drug Metab. Dispos. 1995, 9, 916.
6. Furst, S.; Hosztafi, S.; Friedmann, T. Curr. Med. Chem.
¨
1995, 1, 423.
7. Aldrich, J. V. Analgesics. In Wolff, M. E., Ed.; BurgerÕs
Medicinal Chemistry and Drug Discovery; Wiley: New
York, 1996; Vol. 3, pp 321–441.
8. Zimmerman, D. M.; Leander, J. D.; Cantrell, B. E.; Reel,
J. K.; Snoddy, J.; Mendelsohn, L. G.; Johnson, B. G.;
Mitch, C. H. J. Med. Chem. 1993, 36, 2833.
9. Werner, J. A.; Cerbone, L. R.; Frank, S. A.; Ward, J. A.;
Labib, P.; Tharp-Taylor, R. W.; Ryan, C. W. J. Org.
Chem. 1996, 61, 587.
10. Intermediate 13 can be prepared and stored for long
periods of time, thus it can be used as a common
intermediate in the synthesis of different aryl piperidines.
11. Fu, J.; Chen, Y.; Castelhano, A. L. Synlett 1998, 12, 1408.
12. The regiochemistry and stereochemistry was confirmed
through analysis of intermediates 16. Full assignments of