SCHEME 1
Highly Stereoselective Aldol Reaction
Based on Titanium Enolates from
(S)-1-Benzyloxy-2-methyl-3-pentanone
Joan G. Solsona, Joaquim Nebot, Pedro Romea,* and
Fe`lix Urp´ı*
Departament de Quı´mica Orga`nica, Universitat de
Barcelona, Martı´ i Franque´s 1-11, 08028 Barcelona,
Catalonia, Spain
pedro.romea@ub.edu; felix.urpi@ub.edu
Received April 19, 2005
Alternative titanium-mediated aldol procedures based on
several protected â-hydroxy ethyl ketones have been sur-
veyed. Eventually, enolization of (S)-1-benzyloxy-2-methyl-
3-pentanone (1) with (i-PrO)TiCl3/i-Pr2NEt provided a very
reactive enolate that afforded the corresponding 2,4-syn-4,5-
syn aldol adducts in high yields and diastereomeric ratios
with a broad range of aldehydes
ture.4,5 In this context, enantiomerically pure 1-benzyl-
oxy-2-methyl-3-pentanone, easily prepared from Roche
ester, is arguably the most outstanding representative
of such systems. This chiral ethyl ketone, introduced and
mastered by Paterson,4,6 gives access to several stereo-
chemical arrays and has been successfully used in the
synthesis of many natural products.7 Thus, boron enolate
shown in Scheme 1 provides 2,4-anti-4,5-anti aldols
through a transition state that avoids lone pair repulsions
between the enolate oxygen and that of the benzyl
ether.6b Alternatively, tin(II) enolate takes advantage of
the coordinating ability of benzyloxy group and affords
stereoselectively the corresponding 2,4-syn-4,5-syn coun-
terparts through a chelated transition state.6c
Despite the tremendous accomplishments achieved
during the last two decades in the asymmetric aldol
arena, there is still an ongoing pursuit of more efficient
procedures to prepare optically active â-hydroxy carbonyl
compounds.1 Indeed, new catalytic methodologies are
currently challenging classical approaches based on
chiral auxiliaries.1,2 However, traditional substrate-
controlled aldol reactions, which rely upon the stereo-
chemical bias imparted by chiral ketones or aldehydes,
still hold a prominent position and are widely considered
as one of the most powerful strategies to the stereo-
selective construction of polypropionate-like natural prod-
ucts.3,4
Particularly, much attention has been paid to chiral
â-hydroxy ketones because the resulting aldol adducts
can be easily incorporated into the molecular architec-
Regardless of the high levels of diastereocontrol achieved
in the above-mentioned tin-based aldol reactions, the
involvement of tin(II) triflate means a serious drawback
(1) (a) Palomo, C.; Oiarbide, M.; Garc´ıa, J. M. Chem. Soc. Rev. 2004,
33, 65-75. (b) Modern Aldol Reactions; Mahrwald, R., Ed.; Wiley-
VCH: Weinheim, Germany, 2004.
(2) (a) Nelson, S. G. Tetrahedron: Asymmetry 1998, 9, 357-389. (b)
Carreira, E. M. Comprehensive Asymmetric Catalysis; Jacobsen, E. N.;
Pfaltz, A.; Yamamoto, H., Eds.; Springer: Heidelberg, Germany, 1999;
Vol. 3, pp 997-1065. (c) Machajewski, T. D.; Wong, C.-H. Angew.
Chem., Int. Ed. 2000, 39, 1352-1374. (d) Johnson, J. S.; Evans, D. A.
Acc. Chem. Res. 2000, 33, 325-335. (e) Denmark, S. E.; Stavenger, R.
A. Acc. Chem. Res. 2000, 33, 432-440.
(3) Actually, substrate-controlled aldol reactions are unparalleled
for the coupling of structurally complex fragments in advanced steps
of total syntheses. (a) Nicolaou, K. C.; Vourloumis, D.; Winssinger, N.;
Baran, P. S. Angew. Chem., Int. Ed. 2000, 39, 44-122. (b) Nicolaou,
K. C.; Snyder, S. A. Classics in Total Synthesis II; Wiley-VCH:
Weinheim, Germany, 2003.
(4) (a) Franklin, A. S.; Paterson, I. Contemp. Org. Synth. 1994, 1,
317-338. (b) Paterson, I.; Cowden, C. J. Organic Reactions; Wiley &
Sons: New York, 1997; Vol. 51, pp 1-200.
(5) (a) Evans, D. A.; Rieger, D. L.; Bilodeau, M. T.; Urp´ı, F. J. Am.
Chem. Soc. 1991, 113, 1047-1049. (b) Evans, D. A.; Dart, M. J.; Duffy,
J. L.; Rieger, D. L. J. Am. Chem. Soc. 1995, 117, 9073-9074. (c) Evans,
D. A.; Dart, M. J.; Duffy, J. L.; Yang, M. G. J. Am. Chem. Soc. 1996,
118, 4322-4343.
(6) (a) Paterson, I.; Lister, M. A. Tetrahedron Lett. 1988, 29, 585-
588. (b) Paterson, I.; Goodman, J. M.; Isaka, M. Tetrahedron Lett. 1989,
30, 7121-7124. (c) Paterson, I.; Tillyer, R. D. Tetrahedron Lett. 1992,
33, 4233-4236. (d) Paterson, I.; Tillyer, R. D. J. Org. Chem. 1993, 58,
4182-4184.
(7) (a) Paterson, I.; Perkins, M. V. J. Am. Chem. Soc. 1993, 115,
1608-1610. (b) Paterson, I.; Norcross, R. D.; Ward, R. A.; Romea, P.;
Lister, M. A. J. Am. Chem. Soc. 1994, 116, 11287-11314. (c) Paterson,
I.; Yeung, K.-S.; Ward, R. A.; Smith, J. D.; Cumming, J. G.; Lamboley,
S. Tetrahedron 1995, 51, 9467-9486. (d) Paterson, I.; Doughty, V. A.;
McLeod, M. D.; Trieselmann, T. Angew. Chem., Int. Ed. 2000, 39,
1308-1312. (e) Paterson, I.; Florence, G. J.; Gerlach, K.; Scott, J. P.;
Sereinig, N. J. Am. Chem. Soc. 2001, 123, 9535-9544.
10.1021/jo050792l CCC: $30.25 © 2005 American Chemical Society
Published on Web 07/09/2005
J. Org. Chem. 2005, 70, 6533-6536
6533