D. O’Hagan, Nat. Prod. Rep., 1995, 12, 1; (c) R. D. Norcross and
I. Paterson, Chem. Rev., 1995, 95, 2041.
2 G. R. Pettit, Z. A. Chicacz, F. Gao, C. L. Herald, M. R. Boyd,
J. M. Schmidt and J. N. A. Hooper, J. Org. Chem., 1993, 58, 1302;
M. Kobayashi, S. Aoki, H. Sakai, K. Kawazoe, N. Kihara, T. Sasaki
and I. Kitagawa, Tetrahedron Lett., 1993, 34, 2795.
3 (a) B. A. Kulkarni, G. P. Roth, E. Lobkovsky and J. A. Porco, J. Comb.
Chem., 2002, 4, 56; (b) R. P. Trump and P. A. Bartlett, J. Comb. Chem.,
2003, 5, 285.
4 S. Mitsuhashi, H. Shima, T. Kawamura, K. Kikuchi, M. Oikawa,
A. Ichihara and H. Oikawa, Bioorg. Med. Chem. Lett., 1999, 9, 2007.
5 For leading references to other completed total syntheses of the
spongistatins, see: (a) D. A. Evans, B. W. Trotter, B. Cote, P. J.
Coleman, L. C. Dias and A. N. Tyler, Angew. Chem., Int. Ed. Engl.,
1997, 36, 2744; (b) M. M. Hayward, R. M. Roth, K. J. Duffy, P. I.
Dalko, K. L. Stevens, J. Guo and Y. Kishi, Angew. Chem. Int. Ed.,
1998, 37, 192; (c) A. B. Smith, III, Q. Lin, V. A. Doughty, L. Zhuang,
M. D. McBriar, J. K. Kerns, C. S. Brook, N. Murase and
K. Nakayama, Angew. Chem. Int. Ed., 2001, 40, 196; M. T. Crimmins,
J. D. Katz, D. G. Washburn, S. P. Allwein and L. F. McAtee, J. Am.
Chem. Soc., 2002, 124, 5661; (d) C. H. Heathcock, M. McLaughlin,
J. Medina, J. L. Hubbs, G. A. Wallace, R. Scott, M. M. Claffey,
C. J. Hayes and G. R. Ott, J. Am. Chem. Soc., 2003, 125, 12844.
6 (a) I. Paterson, D. Y.-K. Chen, M. J. Coster, J. L. Acena, J. Bach, K. R.
Gibson, L. E. Keown, R. M. Oballa, T. Trieselmann, D. J. Wallace,
A. P. Hodgson and R. D. Norcross, Angew. Chem. Int. Ed., 2001, 40,
4055; (b) I. Paterson and M. J. Coster, Strategies and Tactics in Organic
Synthesis, ed. M. Harmata, Elsevier, Oxford, 2004, vol. 4, ch. 8, p. 211.
7 For reviews on the generation of natural product-type libraries, see: (a)
C. Watson, Angew. Chem. Int. Ed., 1999, 38, 1903; (b) K. C. Nicolaou
and J. A. Pfefferkorn, Biopolymers, 2001, 60, 171; (c) D. G. Hall,
S. Manku and F. Wang, J. Comb. Chem., 2001, 3, 125; (d) J. Nielsen,
Curr. Opin. Chem. Biol., 2002, 6, 297; (e) R. Breinbauer, M. Manger,
M. Scheck and H. Waldmann, Curr. Med. Chem., 2002, 9, 2129; (f) J. Y.
Ortholand and A. Ganesan, Curr. Opin. Chem. Biol., 2004, 8, 271.
8 For our earlier work on the solution phase synthesis of spongistatin
analogues, see: I. Paterson, J. L. Acena, J. Bach, D. Y.-K. Chen and
M. J. Coster, Chem. Commun., 2003, 462.
Scheme 3 Cleavage of the linear precursor 4a from the solid support and
concomitant spiroacetalisation to give the model AB-spiroacetal 5 of
spongistatin.
9 (a) I. Paterson and T. Temal-Laib, Org. Lett., 2002, 4, 2473; (b)
I. Paterson, M. Donghi and K. A. Gerlach, Angew. Chem. Int. Ed.,
2000, 39, 3315; (c) C. Gennari, S. Ceccarelli, U. Piarulli, K. Aboutayab,
M. Donghi and I. Paterson, Tetrahedron, 1998, 54, 14999; (d) I. Paterson
and J. P. Scott, J. Chem. Soc., Perkin Trans. 1, 1999, 1003.
10 The Waldmann group have recently reported an aldol-based solid phase
approach to spiroacetals: O. Baran, S. Sommer and H. Waldmann,
Angew. Chem. Int. Ed., 2004, 43, 3195.
11 For a review on asymmetric boron aldol reactions, see: C. J. Cowden
and I. Paterson, Org. React., 1997, 51, 1.
12 K. A. Savin, J. C. G. Woo and S. J. Danishefsky, J. Org. Chem., 1999,
64, 4183.
Scheme 4 Cleavage of the linear precursor 3a from the solid support and
concomitant spiroacetalisation to give the fully elaborated C1–C15
fragment 2 of spongistatin.
13 I. Paterson, R. M. Oballa and R. D. Norcross, Tetrahedron Lett., 1996,
37, 8581.
14 A. J. Duplantier, M. H. Nantz, J. C. Roberts, R. P. Short, P. Somfai
and S. Masamune, Tetrahedron Lett., 1989, 30, 7357.
15 In preliminary studies directed towards the solid phase synthesis of the
CD-spiroacetal of spongistatin, the C22–C28 subunit 18 was prepared:
Homoallylic alcohol 16 was attached to the resin via a diisopropylsilyl
linker to access 17. Ozonolysis, aldol reaction, and subsequent TBS
protection gave resin-bound ketone 18, again with a high level of
diastereoselectivity. See ESI.{
resin and selective removal of protecting groups then led to the
isolation of the required spiroacetals, as in 3a A 2 and 4a A 5. The
use of different homoallylic alcohols and aldehydes as building
blocks should enable the extension of this methodology to access
many different spiroacetal scaffolds. In more general terms, a large
variety of different starter units and a wide range of aldehydes may
be used in a polymer-supported parallel synthesis fashion to
generate large and structurally diverse libraries of polyketide
sequences.9 Current efforts are being directed to extend this
methodology to the solid phase synthesis of other, structurally
diverse, natural polyketide-like libraries.
We thank the DAAD (Deutscher Akademischer
Austauschdienst; Postdoctoral Fellowship for D. G.), the
European Commission (IHP Network HPRN-CT-2000-00014;
Postdoctoral Fellowship for D. M.) and Merck for support.
16 The additional methyl group attached to C9 in spongistatin is best
introduced at a later stage, see: I. Paterson and R. M. Oballa,
Tetrahedron Lett., 1997, 38, 8241.
17 The initial product mixture contains 5, its C7-epimer and partially
cyclised hemiacetals (ratio y1:2:2): see ESI{.
18 The lower yield obtained here compared to 5 may be attributable to
Notes and references
1 For reviews on polyketide natural products, see: (a) D. O’Hagan, The
Polyketide Metabolites, Ellis Horwood, Chichester, 1991; (b)
partial deprotection of the TIPS ether.
3570 | Chem. Commun., 2005, 3568–3570
This journal is ß The Royal Society of Chemistry 2005