C O M M U N I C A T I O N S
and display different emission in a duplex versus single-stranded
oligonucleotides. Of particular importance is its ability to positively
report the presence of DNA abasic sites with significantly increased
emission.
Acknowledgment. We thank the National Institutes of Health
(GM 069773) for generous support, and Professor Doug Magde
for his assistance and insight.
Supporting Information Available: Synthetic details, thermal de-
naturation, absorption/fluorescence spectra, and crystal structures. This
Figure 3. Steady-state emission of 5‚6 (blue, 1.0 × 10-6 M), 5 (green,
1.0 × 10-6 M), and 5‚7 (red, 1.0 × 10-6 M) in buffer.13,17
References
(1) For review articles, see: (a) Wojczewski, C.; Stolze, K.; Engels, J. W.
Synlett 1999, 1667-1678. (b) Hawkins, M. E. Cell Biochem. Biophys.
2001, 34, 257-281. (c) Rist, M. J.; Marino, J. P. Curr. Org. Chem. 2002,
6, 775-793.
(2) Ward, D. C.; Reich, E.; Stryer, L. J. Biol. Chem. 1969, 244, 1228-1237.
(3) 5-methylpyrimidin-2-one is another example. See: (a) Wu, P.; Nordlund,
T. M.; Gildea, B.; McLaughlin, L. W. Biochemistry 1990, 29, 6508-
6514. (b) Singleton, S. F.; Shan, F.; Kanan, M. W.; McIntosh, C. M.;
Stearman, C. J.; Helm, J. S.; Webb, K. J. Org. Lett. 2001, 3, 3919-3922.
(4) (a) Secrist, J. A., III; Barrio, J. R.; Leonard, N. J. Science 1972, 175,
646-647. (b) Holme´n, A.; Albinsson, B.; Norde´n, B. J. Phys. Chem. 1994,
98, 13460-13469.
(5) For benzo[g]quinazoline-2,4-(1H,3H)-dione, see: (a) Godde, F.; Toulme´,
J.-J.; Moreau, S. Biochemistry 1998, 37, 13765-13775. (b) Arzumanov,
A.; Godde, F.; Moreau, S.; Toulme´, J.-J.; Weeds, A.; Gait, M. J. HelV.
Chim. Acta 2000, 83, 1424-1436.
(6) (a) Ren, R. X.-F.; Chaudhuri, N. C.; Paris, P. L.; Rumney, S., IV; Kool,
E. T. J. Am. Chem. Soc. 1996, 118, 7671-7678. (b) Stra¨ssler, C.; Davis,
N. E.; Kool, E. T. HelV. Chim. Acta 1999, 82, 2160-2171.
Figure 4. Denaturation of duplex 5‚6 monitored by absorbance (red
triangles, 1.0 × 10-6 M) and fluorescence (blue squares, 2.0 × 10-6 M) in
buffer.13,16
(7) (a) Netzel, T. L.; Zhao, M.; Nafisik, K.; Headrick, J.; Sigman, M. S.;
Eaton, B. E. J. Am. Chem. Soc. 1995, 117, 9119-9128. (b) Kerr, C. E.;
Mitchell, C. D.; Headrick, J.; Eaton, B. E.; Netzel, T. L. J. Phys. Chem.
B 2000, 104, 1637-1650. (c) Seela, F.; Zulauf, M.; Sauer, M.; Deimel,
M. HelV. Chim. Acta 2000, 83, 910-927. (d) Seela, F.; Feiling, E.; Gross,
J.; Hillenkamp, F.; Ramzaeva, N.; Rosemeyer, H.; Zulauf, M. J.
Biotechnol. 2001, 86, 269-279.
to its perfect complement 6, a duplex (5‚6) that is as stable as the
control unmodified duplex 6‚8 is obtained (Tm ) 56 °C for both).9
Similar to other emissive nucleosides (e.g., 2-aminopurine), the
emission of the furan containing dU is significantly quenched when
found in a perfectly base-paired duplex (Figure 3). Importantly,
thermal denaturation curves (Figure 4), determined by either
absorbance at 260 nm or emission at 430 nm, yield the same melting
temperature (Tm ) 56 °C).16
Abasic sites are important DNA lesions that can be generated
either spontaneously or via enzymatic base excision of damaged
nucleosides. Several methods have been developed for detecting
the presence of these cytotoxic abasic sites, most require irreversible
modifications of isolated DNA.18 When oligo 5 is hybridized to
the tetrahydrofuran-containing oligo 7, a duplex containing an abasic
site is formed. Remarkably, the emission of duplex 5‚7 is enhanced
7-fold when compared to that of duplex 5‚6, formed upon
hybridization to the perfect complement (Figure 3). Nucleoside 2a,
when incorporated into a reporter oligonucleotide, positively signals
the presence of a DNA abasic site.
An unpaired base opposite an abasic site can be intrahelical or
extrahelical, depending on the sequence context. Our current
working hypothesis is that 2a is intrahelical, assuming a syn
conformation. This stacked conformation protects the hydrophobic
furan moiety, while projecting the hydrogen bonding face toward
the major groove. Support is offered by the following observations.
(a) Duplex 5‚7 is more stable than the control duplex 7‚8 that
contains a dT residue opposite the abasic site (Tm ) 39 and 35 °C,
respectively).9 The increased stability of the modified abasic duplex
(∆Tm ) +4 °C) suggests a favorable accommodation of the
modified nucleobase by the duplex. (b) The emission band observed
for duplex 5‚7 decays sharper (>500 nm) than when compared to
the emission exhibited by the free nucleoside in solution. This is
consistent with flattening of the chromophore that can be associated
with the restricted rotation of the conjugated furan ring upon
inclusion within the DNA duplex.19
(8) Hurley, D. J.; Seaman, S. E.; Mazura, J. C.; Tor, Y. Org. Lett. 2002, 4,
2305-2308.
(9) See Supporting Information for experimental details.
(10) Previous synthesis of 2a, 2b, and 2d: (a) Wigerinck, P.; Pannecouque,
C.; Snoeck, R.; Claes, P.; De Clercq, E.; Herdewijn, P. J. Med. Chem.
1991, 34, 2383-2389. 2d: (b) Gutierrez, A. J.; Terhorst, T. J.; Matteucci,
M. D.; Froehler, B. C. J. Am. Chem. Soc. 1994, 116, 5540-5544.
(11) Commercial availability of 5-iodouridine makes RNA analogues possible.
(12) Incorporation of 4 into oligonucleotides was accomplished using standard
protocols for solid-phase oligonucleotide synthesis (88% unoptimized
coupling efficiency). Deprotection using concentrated ammonium hy-
droxide was followed by PAGE purification. Oligonucleotides were
sequenced using MALDI-TOF MS.9
(13) Aqueous buffer ) 0.01 M sodium phosphate, 0.1 M NaCl, pH ) 7.0.
(14) This behavior typically occurs in polar molecules that are likely to have
enlarged dipoles and charge-transfer character in their excited state.
(15) The λmax values of 5‚6 and 5‚7 are identical (Figure S7.4) and similar to
that of 2a.9
(16) The emission of 2a is inherently temperature dependent and decreases as
temperature increases. See Figures S8.1-S8.3 in the Supporting Informa-
tion.9
(17) Duplex 6‚8 was subtracted for background correction.9
(18) Irreversible abasic site detection: (a) Weinfeld, M.; Liuzzi, M.; Paterson,
M. C. Biochemistry 1990, 29, 1737-1743. (b) Kubo, K.; Ide, H.; Wallace,
S. S.; Kow, Y. W. Biochemistry 1992, 31, 3703-3708. (c) Lhomme, J.;
Constant, J.-F.; Demeunynck, M. Biopolymers 2000, 52, 65-83. (d)
Atamna, H.; Cheung, I.; Ames, B. N. Proc. Natl. Acad. Sci. U.S.A. 2000,
97, 686-691. (e) Bowman, K. J.; Le Pla, R.; Guichard, Y.; Farmer, P.
B.; Jones, G. D. D. Nucleic Acids Res. 2001, 29, e101. (f) Sun, H. B.;
Qian, L.; Yokota, H. Anal. Chem. 2001, 73, 2229-2232. (g) Georgakilas,
A. G.; Bennett, P. V.; Sutherland, B. M. Nucleic Acids Res. 2002, 30,
2800-2808. (h) Zhang, L.-K.; Gross, M. L. J. Am. Soc. Mass Spectrom.
2002, 13, 1418-1426. (i) Hirose, T.; Ohtani, T.; Muramatsu, H.; Tanaka,
A. Photochem. Photobiol. 2002, 76, 123-126. (j) JongMin, K.; Hiroshi,
M.; HeaYeon, L.; Tomoji, K. FEBS Lett. 2003, 555, 611-615. (k) Sato,
K.; Greenberg, M. M. J. Am. Chem. Soc. 2005, 127, 2806-2807. Other
methods: (l) Fukui, K.; Morimoto, M.; Segawa, H.; Tanaka, K.; Shimidzu,
T. Bioconjugate Chem. 1996, 7, 349-355. (m) Matray, J. T.; Kool, E. T.
Nature 1999, 399, 704-708. (n) Rachofsky, E. L.; Seibert, E.; Stivers, J.
T.; Osman, R.; Alexander Ross, J. B. Biochemistry 2001, 40, 957-967.
(o) Brotschi, C.; Ha¨berli, A.; Leumann, C. J. Angew. Chem. 2001, 40,
3012-3014. (p) Yoshimoto, K.; Nishizawa, S.; Minagawa, M.; Teramae,
N. J. Am. Chem. Soc. 2003, 125, 8982-8983. (q) Valis, L.; Amann N.;
Wagenknecht, H.-A. Org. Biomol. Chem. 2005, 3, 36-38.
(19) We are currently pursuing a high-resolution NMR structural elucidation
of the modified duplex.
In summary, an accessible and simple fluorescent dT analogue
is demonstrated to effectively probe the DNA microenvironment
JA052000A
9
J. AM. CHEM. SOC. VOL. 127, NO. 31, 2005 10785