Journal of the American Chemical Society
Article
(2) (a) Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110,
132. (b) Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.;
Ruoff, R. S. Adv. Mater. 2010, 22, 3906. (c) Potts, J. R.; Dreyer, D. R.;
Bielawski, C. W.; Ruoff, R. S. Polymer 2011, 52, 5.
(3) Gogotsi, Y. Carbon Nanomaterials; CRC Press: Boca Raton, FL,
2006. C60: Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.;
Smalley, R. E. Nature 1985, 318, 162. Carbon nanotubes: Iijima, S.
Nature 1991, 354, 56. Peapods: Smith, B. W.; Monthioux, M.; Luzzi,
D. E. Nature 1998, 396, 323. Diamondoids: Dahl, J. E. P.; Moldovan,
J. M.; Wei, Z.; Lipton, P. A.; Denisevich, P.; Liu, S.; Schreiner, P. R.;
Carlson, R. M. K. Angew. Chem., Int. Ed. 2011, 49, 9881.
in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2001. (i) Sibi,
M. P.; Manyem, S.; Zimmerman. J. Chem. Rev. 2003, 103, 3263.
(16) Alabugin, I. V.; Gilmore, K.; Patil, S.; Manoharan, M.;
Kovalenko, S. V.; Clark, R. J.; Ghiviriga, I. J. Am. Chem. Soc. 2008,
130, 11535.
(17) For general discussion of alkyne cyclizations, see: (a) Gilmore,
K.; Alabugin, I. V. Chem. Rev. 2011, 111, 6513. (b) Alabugin, I.;
Gilmore, K.; Manoharan, M. J. Am. Chem. Soc. 2011, 133, 12608. (c)
For a discussion of 5-exo/6-endo competition in conjugated systems,
see: Alabugin, I. V.; Manoharan, M. J. Am. Chem. Soc. 2005, 127,
12583.
(18) Intramolecular activation through the Bergman cyclization also
provides complicated mixtures: (a) Grubbs, R.; Kratz, D. Chem. Ber
1993, 126, 149. (b) Gleiter, R; Kratz, D. Angew. Chem., Int. Ed. Engl.
1993, 32, 842.
(4) Steinberg, B. D.; Jackson, E. A.; Filatov, A. S.; Wakamiya, A.;
Petrukhina, M. A.; Scott, L. T. J. Am. Chem. Soc. 2009, 131, 10537.
(5) Ritter, K. A.; Lyding, J. W. Nat. Mater. 2009, 8, 235.
(6) Wang, X.; Li, X.; Zhang, L.; Yoon, Y.; Weber, P. K.; Wang, H.;
(19) Alabugin, I. V.; Manoharan, M. J. Am. Chem. Soc. 2005, 127,
9534. Alabugin, I. V.; Timokhin, V. I.; Abrams, J. N.; Manoharan, M.;
Ghiviriga, I.; Abrams, R. J. Am. Chem. Soc. 2008, 130, 10984.
(20) Spectra of fulvene products were analogous to the literature
data: Kovalenko, S. V.; Peabody, S.; Manoharan, M.; Clark, R. J.;
Alabugin, I. V. Org. Lett. 2004, 6, 2457. Peabody, S.; Breiner, B.;
Kovalenko, S. V.; Patil, S.; Alabugin, I. V. Org. Biomol. Chem. 2005, 3,
218. For the formation of fulvenes via radical 5-exo-dig cyclization of
Guo, J.; Dai, H. Science 2009, 324, 768.
(7) For some of the advantages of the alternative “top-down”
approach, see: Niyogi, S.; Bekyarova, E.; Itkis, M. E.; McWilliams, J.
L.; Hamon, M. A.; Haddon, R. C. J. Am. Chem. Soc. 2006, 128, 7720.
Epitaxial graphene: Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazgh, A. Y.;
Feng, R.; Dai, Z.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.;
deHeer, W. A. J. Phys. Chem. B. 2004, 108, 19912.
(8) Selected examples: (a) Goldfinger, M. B.; Swager, T. M. J. Am.
Chem. Soc. 1994, 116, 7895. (b) Yang, X.; Dou, X.; Rouhanipour, A.;
alkynes, see also: Konig, B.; Pitsch, W.; Klein, M.; Vasold, R.; Prall,
̈
M.; Schreiner, P. R. J. Org. Chem. 2001, 66, 1742. Lewis, K. D.; Rowe,
M. P.; Matzger, A. J. Tetrahedron 2004, 60, 7191.
(21) Beckwith, A. L. J.; Easton, C. J.; Serelis, A. K. J. Chem. Soc. Chem.
Commun. 1980, 482.
(22) Prakash, C.; Mohanakrishnan, A. K. Eur. J. Org. Chem. 2008,
1535.
(23) The cascade product is formed as a ∼1:1.1 mixture of two
diastereomers. We have tentatively assigned the major product as the
more stable trans-isomer.
(24) Alabugin, I. V.; Manoharan, M.; Breiner, B.; Lewis, F. J . Am.
Chem. Soc. 2003, 125, 9329.
Zhi, L.; Rader, H. J.; Mullen, K. J. Am. Chem. Soc. 2008, 130, 4216.
̈
̈
(c) Whalley, A. C.; Plunkett, K. N.; Gorodetsky, A. A.; Schenck, C. L.;
Chiu, C. Y.; Steigerwald, M. L.; Nuckolls, C. Chem. Sci. 2011, 2, 132.
(d) Loo, Y. L.; Hiszpanski, A. M.; Kim, B.; Wei, S.; Chiu, C. Y.;
Steigerwald, M. L.; Nuckolls, C. Org. Lett. 2010, 12, 4840. (e) Chen, T.
A.; Liu, R. S. Chem.Eur. J. 2011, 17, 8023. (f) King, B. T.; Kroulik, J.;
Robertson, C. R.; Rempala, P.; Hilton, C. L.; Korinek, J. D.; Gortar, L.
M. J. Org. Chem. 2007, 72, 2279.
(9) (a) Wu, J.; Pisula, W.; Mullen, K. Chem. Rev. 2007, 107, 718.
̈
(b) Mullen, K., Wegner, G. Electronic Materials: The Oligomeric
̈
Approach; Wiley-VCH: Weinheim, 1998.
(25) Goldfinger, M. B.; Crawford, K. B.; Swager, T. M. J . Am. Chem.
Soc. 1997, 119, 4578 and ref 8a..
(26) (a) Shifrina, Z. B.; Averina, M. S.; Rusanov, A. L.; Wagner, M.;
(10) Reviews: (a) Bendikov, M.; Wudl, F.; Perepichka, D. F. Chem.
Rev. 2004, 104, 4891. (b) Anthony, J. E. Chem. Rev. 2006, 166, 5028.
(11) Selected examples: Ito, S.; Wehmeier, M.; Brand, J. D.; Kubel,
̈
Mullen, K. Macromolecules 2000, 33, 3525. Feng, X.; Pisula, W.;
̈
C.; Epsch, R.; Rabe, J. P.; Mullen, K. Chem.Eur. J. 2000, 6, 4327.
̈
Mullen, K. Pure Appl. Chem. 2009, 81, 2203. (b) Another conceptually
̈
Fechtenkotter, A.; Tchebotareva, N.; Watson, M. D.; Mullen, K.
̈
̈
related example is provided by the elegant work of L. Scott, who used
sequential Diels-Alder reactions of alkynes to grow walls of carbon
nanotubes. Scott, L. T.; Jackson, E. A.; Zhang, Q.; Steinberg, B. D.;
Bancu, M.; Li, B. J. Am. Chem. Soc. 2012, 134, 107 See also ref 13a. and
13b..
Tetrahedron 2001, 57, 3769. Payne, M. M.; Parkin, S. R.; Anthony, J. E.
J. Am. Chem. Soc. 2005, 127, 8028. Kuninobu, Y.; Seiki, T.; Kanamaru,
S.; Nishina, Y.; Takai, K. Org. Lett. 2010, 12, 5287−5289.
(12) Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg,
S.; Mouth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X.; Mullen, K.; Fasel,
̈
R. Nature 2010, 466, 470.
(13) Template-initiated growth strategy: (a) Fort, E. H.; Donovan,
P. M.; Scott, L. T. J. Am. Chem. Soc. 2009, 131, 16006. (b) Fort, E. H.;
Scott, L. T. Angew. Chem., Int. Ed. 2010, 49, 6626. (c) Fort, E. H.;
Scott, L. T. J. Mater. Chem. 2011, 21, 1373.
(14) (a) Neenan, T. X.; Whitesides, G. M. J. Org. Chem. 1988, 53,
2489. (b) Haley, M. M., Tykwinski, R. R., Eds. Carbon-Rich
Compounds: From Molecules to Materials; Wiley-VCH: New York,
2006. (c) Diederich, F., Stang, P. J., Tykwinski, R. R., Eds. Acetylene
Chemistry: Chemistry, Biology and Material Science; Wiley-VCH:
Weinheim, 2005. (d) Bunz, U. H. F. Angew. Chem., Int. Ed. Engl.
1994, 33, 1073. (e) Marsden, J. A.; Haley, M. M. J. Org. Chem. 2005,
70, 10213. (f) Tour, J. M. Chem. Rev. 1996, 96, 537. (g) Diederich, F.;
Rubin, Y. Angew. Chem., Int. Ed. Engl. 1992, 31, 1101. (h) Gholami,
M.; Tykwinski, R. R. Chem. Rev. 2006, 106, 4997. (i) Shin, Y.; Fryxell,
G. E.; Johnson, C. A., II; Haley, M. M. Chem. Mater. 2008, 20, 981.
(j) Johnson, C. A., II; Lu, Y.; Haley, M. M. Org. Lett. 2007, 9, 3725.
(15) (a) Giese, B. Radicals in Organic Synthesis: Formation of Carbon-
Carbon Bonds; Pergamon: Oxford, U.K., 1986. (b) Curran, D. P.
Synthesis 1988, 417, 489. (c) Jasperse, C. P.; Curran, D. P.; Fevig, T. L.
Chem. Rev. 1991, 91, 1237. (d) Hildebrandt, D.; Dyker, G. J. Org.
Chem. 2006, 71, 6728. (e) Wang, K. K. Chem. Rev. 1996, 96, 207.
(f) Snider, B. B. Chem. Rev. 1996, 96, 339. (g) Gansauer, A.; Bluhm, H.
Chem. Rev. 2000, 100, 2771. (h) Renaud, P., Sibi, M. P., Eds. Radicals
9614
dx.doi.org/10.1021/ja3023626 | J. Am. Chem. Soc. 2012, 134, 9609−9614