´
Tomas Llamas et al.
COMMUNICATIONS
terscience, New York, 2002, Vol. 1, pp. 1133–1178; b) M.
Shibasaki, F. Miyazaki, in: Handbook of Organo-Palladi-
um Chemistry for Organic Synthesis, (Ed.: E.-i. Negishi),
Wiley-Interscience, New York, 2002, Vol. 1, pp. 1283–
1315; c) I. P. Beletskaya, A. V. Cheprakov, Chem. Rev.
2000, 100, 3009–3066.
las, C. Westerlund, A. Hallberg, J. Org. Chem. 1985, 50,
3896–3900. Other suitable solvents of choice were
DMA, NMP, while no reaction was observed in
DMSO, toluene, DCE or 1,4-dioxane.
[9] Reported yields refer to mixtures of mono- and diarylat-
ed compounds, which could not be separated by standard
silica gel chromatography. Complete separation of both
products can be achieved by further reverse phase silica
gel chromatography (Merck, lichoprep RP-18, 40–
63 mm), pure compounds 6–10 being isolated in 50–
60% overall yields.
[10] In this particular case, the use of aryldiazonium salts did
not improve the reactivity.
[11] For a review on transition metal-catalyzed C-C bond for-
mation with Grignard reagents, see: H. Shinokubo, K.
Oshima, Eur. J. Org. Chem. 2004, 2081–2091.
[12] For a recent report on Cu-mediated allylic substitution
using a coordinating leaving group, see: a) B. Breit, P.
Demel, C. Studte, Angew. Chem. Int. Ed. 2004, 43, 2–
5; for copper-mediated alkylation of allylic sulfoximines,
see: b) M. Scommoda, H.-J. Gais, S. Bosshammer, G.
Raabe, J. Org. Chem. 1996, 61, 4379–4390; c) H.-J.
Gais, H. Müller, J. Bund, M. Scommoda, J. Brandt, G.
Raabe, J. Am. Chem. Soc. 1995, 117, 2453–2466.
[13] For recent examples on copper-catalyzed processes, see:
a) A. W. Van Zijl, L. A. Arnold, A. J. Minnaard, B. L.
Feringa, Adv. Synth. Catal. 2004, 346, 413–420; b) A.
Alexakis, K. Croset, Org. Lett. 2002, 4, 4147–4149;
c) A. S. E. Karlstrçm, J.-E. Bäckvall, Chem. Eur. J.
2001, 7, 1981–1989; d) A. Alexakis, C. Malan, L. Lea,
C. Benhaim, X. Fournioux, Synlett 2001, 927–930;
e) A. S. E. Karlstrçm, F. F. Huerta, G. J. Meuzelaar, J.-
E. Bäckvall, Synlett 2001, 923–926; f) C. A. Luchaco-
Cullis, H. Mizutani, K. E. Murphy, A. H. Hoveyda, An-
gew. Chem. Int. Ed. 2001, 40, 1456–1460; g) H. Malda,
A. W. Van Zijl, L. A. Arnold, B. L. Feringa, Org. Lett.
2001, 3, 1169–1171.
[2] For a review on Pd-catalyzed allylic substitutions, see:
a) B. M. Trost, M. L. Carawheg, Chem. Rev. 2003, 103,
2921–2943; for Cu-catalyzed allylic substitutions, see:
b) A. S. E. Karlstrçm, J.-E. Bäckvall, in: Modern Orga-
nocopper Chemistry, (Ed.: N. Krause), Wiley-VCH,
Weinheim, 2002, p 259; c) B. Breit, P. Demel, in: Modern
Organocopper Chemistry, (Ed.: N. Krause), Wiley-VCH,
Weinheim, 2002, 188–223.
[3] For recent reviews on intramolecular Heck reaction, see:
a) A. B. Dounay, L. E. Overman, Chem. Rev. 2003, 103,
2945–2964; b) J. T. Link, Org. React. 2002, 60, 157–534.
[4] a) A. Svennebring, P. Nilsson, M. Larhed, J. Org. Chem.
2004, 69, 3345–3349; b) P. Nilsson, M. Larhed, A. Hall-
berg, J. Am. Chem. Soc. 2003, 125, 3430–3431; P. Nilsson,
M. Larhed, A. Hallberg, J. Am. Chem. Soc. 2001, 123,
8217–8225 and references cited therein; c) K. Itami, T.
Nokami, Y. Ishimura, K. Mitsudo, T. Kamei, J. Yoshida,
J. Am. Chem. Soc. 2001, 123, 11577–11585; d) K. Ba-
done, U. Guzzi, Tetrahedron Lett. 1993, 34, 3603–3606.
[5] For a,b-unsaturated sulfoxides, see: a) N. Diaz Buezo, I.
Alonso, J. C. Carretero, J. Am. Chem. Soc. 1998, 120,
7129–7130; see also: b) N. Diaz Buezo, J. C. de la Rosa,
J. Priego, I. Alonso, J. C. Carretero, Chem. Eur. J. 2001,
7, 3890–3900; for a,b-unsaturated sulfones, see: c) P.
´
´
˜
Mauleon, A. A. Nunez, I. Alonso, J. C. Carretero,
´
Chem. Eur. J. 2003, 9, 1511–1520; d) P. Mauleon, I. Alon-
so, J. C. Carretero, Angew. Chem. Int. Ed. 2001, 40, 129
1–1293.
[6] For recent examples on removable directing groups in
other transition metal-catalyzed processes, see: a) P.
´
Mauleon, J. C. Carretero, Org. Lett. 2004, 6, 3195–319
8; b) M. C. Willis, S. J. McNally, P. J. Beswick, Angew.
Chem. Int. Ed. 2004, 43, 340–343; c) S. Ko, H. Han, S.
Chang, Org. Lett. 2003, 5, 2687–2690; d) D.-Y. Lee, B.-
S. Hong, E.-G. Cho, H. Lee, C.-H. Jun, J. Am. Chem.
Soc. 2003, 125, 6372–6373; e) K. Itami, M. Mineno, T.
Kamei, J.-i. Yoshida, Org. Lett. 2002, 4, 3635–3638;
d) S. Ko, Y. Na, S. Chang, J. Am. Chem. Soc. 2002, 124,
750–751; f) C.-H. Jun, H. Lee, C. W. Moon, H.-S.
Hong, J. Am. Chem. Soc. 2001, 123, 8600–8601; g) N.
Chatani, H. Tatamidani, Y. Ie, F. Kakiuchi, S. Murai, J.
Am. Chem. Soc. 2001, 123, 4849–4850; h) B. Breit,
Chem. Eur. J. 2000, 6, 1519–1524.
[14] a) B. M. Trost, C. A. Merlic, J. Am. Chem. Soc. 1988, 110,
5216–5218; b) M. Julia, A. Righini, J.-N. Verpeaux, Tet-
rahedron Lett. 1979, 20, 2393–2396; M. Julia, A. Righini,
J.-N. Verpeaux, Tetrahedron 1983, 39, 3283–3287.
[15] The dramatic rate acceleration effect observed in these
copper-catalyzed allylic substitutions could also be due
to the better leaving group nature of the 2-pyridylsulfon-
yl group compared to the typical phenylsulfonyl group.
Investigation directed towards differentiate between
chelation or electronic assistance is currently under prog-
ress.
[16] CuTC¼copper thiophene-2-carboxylate: G. D. Allred,
L. S. Liebeskind, J. Am. Chem. Soc. 1996, 118, 2748–
2749.
[17] Among the various solvents examined, THFand CH 2Cl2
proved to be the most suitable for the reaction, while di-
ethyl ether or toluene provided very low conversions.
[7] A similar synthetic approach has been reported for the
preparation of related cyclic b,g-unsaturated phenylsulf-
oximines, see: S. Koep, H.-J. Gais, G. Raabe, J. Am.
Chem. Soc. 2003, 125, 13243–13251.
[8] Pd(OAc)2 turned out to be better than Pd2(dba)3 ·CHCl3.
Other silver salts such as AgNO3 or AgOAc provided
similar results, whereas i-Pr2EtN, KOAc, K2CO3 or
K3PO4 led to much lower conversions. For a discussion
on the role of Agþ in the Heck reaction, see: K. Karabe-
˜
[18] For general remarks, see: O. García Mancheno, J. Priego,
´
´
S. Cabrera, R. Gomez Arrayas, T. Llamas, J. C. Carre-
tero, J. Org. Chem. 2003, 68, 3679–3686.
1654
ꢀ 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
asc.wiley-vch.de
Adv. Synth. Catal. 2004, 346, 1651–1654