In combination with concurrent research into the synthesis
of the altromycin aglycone,5 further studies directed toward
the total synthesis of the altromycin natural products are in
progress.
Acknowledgment. We thank the National Institutes of
Health (CA 59703) for support of this research. We also
acknowledge use of shared instrumentation provided by
grants from the National Institutes of Health, National
Science Foundation, and the Georgia Research Alliance
(NMR spectroscopy, mass spectrometry, X-ray diffractom-
etry) as well as the University Research Committee of Emory
University (polarimeter). We also appreciate the work of Dr.
Kenneth I. Hardcastle and Mr. Xikui Fang for crystal
structure determinations of 23b and 24b.
(10) (a) MacLeod, D.; Moorcroft, D.; Quayle, P.; Dorrity, M. R. J.;
Malone, J. F.; Davies, G. M. Tetrahedron Lett. 1990, 31, 6077. (b) Abas,
A.; Beddoes, R. L.; Conway, J. C.; Quayle, P.; Urch, C. J. Synlett 1995,
12, 1264.
(11) (a) Mee, P. H.; Lee, V.; Baldwin, J. E. Angew. Chem., Int. Ed. 2004,
43, 1132. For effect of Cu(I) in the Stille cross-coupling reaction, see: (b)
Liebeskind, L. S.; Fengl, R. W. J. Org. Chem. 1990, 55, 5359. (c) Kapadia,
V. F. S.; Krishnan, B.; Wang, C.; Liebeskind, L. S. J. Org. Chem. 1994,
12, 1047. (d) Casado, A. L.; Espinet, P. Organometallics 2003, 22, 1305.
(e) Han, X.; Stoltz, B. M.; Corey, E. J. J. Am. Chem. Soc. 1999, 121, 7600.
(12) In all cases formation of the undesired homodimerization byproduct
from glycal 13 could not be completely suppressed (ca. 20% yield). The
attempted Stille cross coupling reaction with the bis-TBS-protected stannyl
glycal corresponding to 13 was unsuccessful, perhaps as a result of the
poor solubility of this stannylated glycal in DMF.
(13) (a) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem.
ReV. 1994, 94, 2483. (b) Stereochemical assignments for 15a and 15b are
based on conversions to bicyclic lactones 23a and 23b, respectively.
(14) Transition metal catalyzed hydroborations: (a) Evans, D. A.; Fu,
G. C.; Hoveyda, A. H. J. Am. Chem. Soc. 1988, 110, 6917. (b) Evans, D.
A.; Fu, G. C. J. Am. Chem. Soc. 1991, 113, 4042. An unsuccessful attempt
to achieve hydroxyl-directed hydroboration has been reported: (c) Smith,
A. B., III; Yokoyama, Y.; Huryn, D. M.; Dunlap, N. K. Tetrahedron Lett.
1987, 28, 3659.
Supporting Information Available: Experimental pro-
cedures and characterization data for new compounds,
including data in CIF format. This material is available free
OL050975U
(16) (a) Parikh, J.; Doering, W. J. Am. Chem. Soc. 1967, 89, 5505. (b)
Yamada, S.; Morizono, D.; Yamamoto, K. Tetrahedron Lett. 1992, 33, 4329.
Chromium(VI) oxidations resulted in oxidative cleavage of the C13-C19
bond.
(17) Grindley, T. B. AdV. Carbohydr. Chem. Biochem. 1998, 53, 17.
(18) (a) Kamenecka, T. M.; Danishefsky, S. J. Chem. Eur. J. 2001, 7,
41. (b) Anand, R. C.; Selvapalam, N. Synth. Commun. 1994, 24, 2743.
(19) See Supporting Information for NOE studies on 23a, as well as
crystallographic information for 23b and 24b.
(15) Paterson, I.; Florence, G. J.; Gerlach, K.; Scott, J. P.; Sereinig, N.
J. Am. Chem. Soc. 2001, 123, 9535.
3624
Org. Lett., Vol. 7, No. 17, 2005