7.64–7.66 (4H, m, ArH); dC (100 MHz; CDCl3) 16.9 (CH(CH3)2),
17.9 (CH(CH3)2), 19.1 (C(CH3)3), 26.8 (C(CH3)3 × 3), 29.8
4 For recent reviews on the use of samarium(II) iodide in organic
synthesis: (a) G. A. Molander and C. R. Harris, Chem. Rev., 1996,
96, 307; (b) G. A. Molander and C. R. Harris, Tetrahedron, 1998,
54, 3321; (c) P. G. Steel, J. Chem. Soc., Perkin Trans. 1, 2001, 2727;
(d) H. B. Kagan, Tetrahedron, 2003, 59, 10351; (e) D. J. Edmonds, D.
Johnston and D. J. Procter, Chem. Rev., 2004, 104, 3371.
5 (a) G. A. Molander and G. Hahn, J. Org. Chem., 1986, 51, 1135;
(b) G. A. Molander and G. Hahn, J. Org. Chem., 1986, 51, 2596; (c) K.
Otsubo, J. Inanaga and M. Yamaguchi, Tetrahedron Lett., 1987, 28,
4437; (d) K. Kusuda, J. Inanaga and M. Yamaguchi, Tetrahedron
Lett., 1989, 30, 2945.
=
(CH2CHC O), 35.4 (CH2C(OH)), 37.8 (CH2C(OH)), 42.4
=
(CH(CH3)2), 54.0 (CHC O), 62.1 (CH2OSi), 63.4 (CH2O × 2),
70.1 (CH2C(OH)), 127.7 (ArCH × 4), 129.8 (ArCH × 2), 133.3
+
=
(ArC × 2), 135.5 (ArCH × 4) and 221.9 (C O). LRMS (CI )
469.4 ((M + H)+ 11%) 451 (10), 369 (5), 195 (7) and 57 (100);
HRMS calculated for C28H41O4Si, 469.2774, found 469.2773.
4-[2-(tert-Butyldiphenylsilyloxy)ethyl]-6-methyl-5-oxoheptanoic
acid methyl ester 26. SmI2 (0.1M solution in THF, 1.2 mL,
0.120 mmol) was added dropwise to a solution of ketone 23
(3◦1 mg, 0.055 mmol) in methyl acrylate (54 lL, 0.060 mmol) at
0 C. The solution was allowed to warm to room temperature
and stirred for 20 minutes before further portions of both methyl
acrylate (54 lL, 0.600 mmol) and SmI2 (0.1 M in THF, 1.20 mL,
0.120 mmol) were added and the solution stirred for a further
20 minutes. The reaction was quenched with aqueous saturated
NaHCO3 (5 mL) and distilled H2O (2 mL). The aqueous layer
was extracted with EtOAc, the organic extracts combined,
dried (Na2SO4) and concentrated in vacuo to give the crude
product as a yellow oil. Purification by column chromatography
(silica, 30% EtOAc–petroleum ether) gave ketone 16a (19 mg,
0.052 mmol, 86%) as a clear colourless oil. Further elution then
gave 26 as a (3 mg, 0.007 mmol, 11%) as a clear colourless oil:
mmax (neat)/cm−1 2931 (m), 1738 (s), 1708 (s), 1427 (m) and 1108
(s); dH (400 MHz; CDCl3) 1.04 (3H, d, J 6.9 Hz, CH(CH3)2),
1.06 (9H, s, C(CH3)3), 1.07 (3H, d, J 6.9 Hz, CH(CH3)2),
1.49–1.55 (1H, m, 1H from CH2CH2OSi), 1.63–1.71 (1H,
m, 1H from CH2CH2CO2CH3), 1.78–1.96 (2H, m, 1H from
CH2CH2OSi and 1H from CH2CH2CO2CH3), 2.14–2.32 (2H,
m, CH2CO2CH3), 2.73 (1H, septet, J 6.9 Hz, CH(CH3)2), 3.00
6 A. D. Hughes, D. A. Price and N. S. Simpkins, J. Chem. Soc., Perkin
Trans. 1, 1999, 1295.
7 For selected, recent examples of this reaction, see: (a) J. Castro, A.
Moyano, M. A. Perica`s, A. Riera and A. E. Greene, Tetrahedron:
Asymmetry, 1994, 5, 307; (b) E. Piers and A. M. Kaller, Tetrahedron
Lett., 1996, 37, 5857; (c) G. A. Molander and P. J. Stengel,
Tetrahedron, 1997, 53, 8887; (d) I. Marchueta, E. Montenegro, D.
Panov, M. Poch, X. Verdaguer, A. Moyano, M. A. Perica`s and A.
Riera, J. Org. Chem., 2001, 66, 6400.
8 For selected, recent examples in the context of natural product
synthesis, see: (a) I. Paterson, R. D. Norcross, R. A. Ward, P. Romea
and M. A. Lister, J. Am. Chem. Soc., 1994, 116, 11287; (b) R. A.
Holton, C. Somoza and K.-B. Chai, Tetrahedron Lett., 1994, 35,
1665; (c) B. V. Yang and M. A. Massa, J. Org. Chem., 1996, 61, 5149;
(d) T. Honda and M. Kimura, Org. Lett., 2000, 2, 3925; (e) A. D.
Lebsack, L. E. Overman and R. J. Valentekovich, J. Am. Chem. Soc.,
2001, 123, 4851.
9 (a) J. M. Concello´n, J. A. Pe´rez-Andre´s and H. Rodr´ıguez-Solla,
Angew. Chem., Int. Ed., 2000, 39, 2773; (b) J. M. Concello´n, P. L.
Bernad and H. Rodr´ıguez-Solla, Angew. Chem., Int. Ed., 2001, 40,
3897; (c) J. M. Concello´n, J. A. Pe´rez-Andre´s and H. Rodr´ıguez-
Solla, Chem. Eur. J., 2001, 7, 3062; (d) J. M. Concello´n and H.
Rodr´ıguez-Solla, Chem. Eur. J., 2001, 7, 4266; (e) J. M. Concello´n
and E. Bardales, Eur. J. Org. Chem., 2004, 1523.
10 (a) Y. Nakamura, S. Takeuchi, Y. Ohgo, M. Yamaoka, A. Yoshida
and K. Mikami, Tetrahedron Lett., 1997, 38, 2709; (b) K. Mikami,
M. Yamaoka and A. Yoshida, Synlett, 1998, 607; (c) Y. Nakamura,
S. Takeuchi, Y. Ohgo, M. Yamaoka, A. Yoshida and K. Mikami,
Tetrahedron, 1999, 55, 4595.
11 Janda has reported a single, sulfone example of this linkage as a
member of a different, general class of sulfone linker. Cleavage of the
linker is achieved using sodium/mercury amalgam: X. Zhao, K. W.
Jung and K. D. Janda, Tetrahedron Lett., 1997, 38, 977.
12 For a preliminary account of our work on an oxygen HASC linker,
see: F. McKerlie, D. J. Procter and G. Wynne, Chem. Commun., 2002,
584. We have recently developed a sulfur version of the linkage for
use in solid and fluorous phase synthesis, see: (a) L. A. McAllister, S.
Brand, R. de Gentile and D. J. Procter, Chem. Commun., 2003, 2380;
(b) L. A. McAllister, R. A. McCormick, S. Brand and D. J. Procter,
Angew. Chem., Int. Ed., 2005, 44, 452.
=
(1H, apparent quintet, J 6.6 Hz, CHC O), 3.56–3.69 (5H, m,
CH2OSi and CO2CH3), 7.36–7.46 (6H, m, ArH) and 7.63–8.36
(4H, m, ArH); dC (100 MHz; CDCl3) 17.9 (CH(CH3)2), 18.1
(CH(CH3)2), 19.1 (C(CH3)3), 25.9 (CH2CH2CO2CH3), 26.8
(C(CH3)3 × 3), 31.6 (CH2CO2CH3), 34.0 (CH2CH2OSi), 40.1
=
(CH(CH3)2), 44.9 (CHC O), 51.6 (CO2CH3), 61.3 (CH2OSi),
127.7 (ArCH × 4), 129.7 (ArCH × 2), 133.5 (ArC), 135.5
=
(ArCH × 4), 138.1 (ArC), 173.5 (CO2CH3) and 217.1 (C O);
LRMS (FAB+) 455.3 ((M + H)+ 10%), 397 (45), 199 (100) and
135 (35); HRMS calculated for C27H39O4Si 455.2618, found
455.2614; Further elution gave 4-benzyloxyphenol (11 mg,
0.055 mmol, 91%) as a pale yellow solid.
13 (a) X. Du and R. W. Armstrong, J. Org. Chem., 1997, 62, 5678; (b) X.
Du and R. W. Armstrong, Tetrahedron Lett., 1998, 39, 2281. Further
applications of the reagent on solid phase have since been reported.;
(c) R. M. Myers, S. P. Langston, S. P. Conway and C. Abell, Org.
Lett., 2000, 2, 1349; (d) M. M. Meloni and M. Taddei, Org. Lett.,
2001, 3, 337; (e) M. Gustafsson, R. Olsson and C.-M. Andersson,
Tetrahedron Lett., 2001, 42, 133; (f) M. Tanaka, A. Sudo, F. Sanda
and T. Endo, Macromolecules, 2002, 35, 6845; (g) J. N. P. D’herde and
P. J. DeClercq, Tetrahedron Lett., 2003, 44, 6657; (h) S. N. Baytas, Q.
Wang, N. A. Karst, J. S. Dordick and R. J. Linhardt, J. Org. Chem.,
2004, 69, 6900. See also refs 3c,3d and 12a.
14 R. S. Miller, J. M. Sealy, M. Shabangi, M. L. Kuhlman, J. R. Fuchs
and R. A. Flowers II, J. Am. Chem. Soc., 2000, 122, 7718.
15 For a review of the effects of additives on SmI2 reactions, see: H.
Kagan and J. L. Namy in Lanthanides: Chemistry and Use in Organic
Synthesis; ed. S. Kobayashi, Springer, New York, 1999, p. 155.
16 M. Fisher and R. C. D. Brown, Tetrahedron Lett., 2001, 42,
8227.
Acknowledgements
We thank the Engineering and Physical Research Council
(EPSRC) and OSI Pharmaceuticals for support (F.M.). We also
thank AstraZeneca for the award of a Strategic Research Grant
(D.J.P) and Pfizer for untied funding (D.J.P).
References
1 For selected, recent reviews on solid phase organic synthesis see:
(a) S. Booth, P. H. H. Hermkens, H. C. J. Ottenheijm and D. C. Rees,
Tetrahedron, 1998, 54, 15385; (b) R. C. D. Brown, J. Chem. Soc.,
Perkin Trans. 1, 1998, 3293; (c) R. E. Sammelson and M. J. Kurth,
Chem. Rev., 2001, 101, 137; (d) V. Krchna´k and M. W. Holladay,
Chem. Rev., 2002, 102, 61; (e) R. E. Dolle, J. Comb. Chem., 2003, 5,
693.
2 For reviews on linkers and cleavage strategies for solid phase organic
synthesis, see: (a) I. W. James, Tetrahedron, 1999, 55, 4855; (b) F.
Guillier, D. Orain and M. Bradley, Chem. Rev., 2000, 100, 2091;
(c) S. Bra¨se and S. Dahmen, Chem. Eur. J., 2000, 6, 1899; (d) A. C.
Comely and S. E. Gibson (ne´e Thomas), Angew. Chem., Int. Ed.,
2001, 40, 1012.
3 (a) P. C. Hutchison, T. D. Heightman and D. J. Procter, Org. Lett.,
2002, 4, 4583; (b) P. C. Hutchison, T. D. Heightman and D. J. Procter,
J. Org. Chem., 2004, 69, 790; (c) N. J. Kerrigan, P. C. Hutchison, T. D.
Heightman and D. J. Procter, Chem. Commun., 2003, 1402; (d) N. J.
Kerrigan, P. C. Hutchison, T. D. Heightman and D. J. Procter, Org.
Biomol. Chem., 2004, 2476.
17 Tanko has shown that the ring opening of radical anions derived from
aliphatic cyclopropyl ketones is faster than for the corresponding
neutral cyclopropinyl radical and occurs at a rate >107 s−1. J. P.
Stevenson, W. F. Jackson and J. M. Tanko, J. Am. Chem. Soc., 2002,
124, 4271.
18 The fragmentation of cyclopropyl ketones on treatment with samar-
ium(II) iodide has been exploited previously in both synthetic
and mechanistic contexts. (a) R. A. Batey and W. B. Motherwell,
Tetrahedron Lett., 1991, 43, 6211; (b) G. A. Molander and J. A.
McKie, J. Org. Chem., 1991, 56, 4112; (c) D. P. Curran, X. Gu, W.
Zhang and P. Dowd, Tetrahedron, 1997, 53, 9023; (d) G. Masson, S.
Py and Y. Valle´e, Angew. Chem., Int. Ed., 2002, 41, 1772; (e) T. K.
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 2 8 0 5 – 2 8 1 6
2 8 1 5