R. Erenler, J.-F. Biellmann / Tetrahedron Letters 46 (2005) 5683–5685
5685
rt. After 5 h, the usual extraction with CH2Cl2 was
performed. By column chromatography (silica, hexane/
EtOAc, 4:1) we separated two products: 3-(trimethylsilyl)-
1-(pyridine-4-yl)prop-2-yn-1-one 2d: Yellow liquid (26%),
1H NMR (400 MHz, CDCl3): d 0.30 (s, 9H), 7.87 (dd,
J = 6.0, 3.0 Hz, 2H), 8.81 (dd, J = 6.0, 3.0 Hz, 2H); 13C
NMR (100 MHz, CDCl3): d À0.7, 100.1, 103.2, 122.1,
142.1, 150.9, 176.7; UV/vis (CH2Cl2), kmax (e) = 237
(6610); Ms (FAB+), 204 [M++H]. Anal. Calcd for
C11H13NOSi: C, 64.98; H, 6.44; N, 6.89. Found: C,
64.95; H, 6.41; N, 6.85. (E)-3-(trimethylsilyl)-1-(pyridine-
4-yl)prop-2-en-1-one 3d: Colourless liquid (52%), 1H
We prepared the propargylic alcohol at C-2 12. The
treatment of this alcohol 12 with pyridinium chloride
gives the enone 13 in an yield of 42%. The same reason-
ing as for alcohols 1 applies here. It has been reported
that heating of the related allylic alcohol, 1-(pyridin-2-
yl)prop-2-en-1-ol, in chloroform at 110 °C for
two days gave 1-(pyridin-2-yl)propan-1-one and that the
intermediate was trapped.10
TMS
TMS
NMR (400 MHz, CDCl3):
d 0.11(s, 9H), 7.05 (d,
HO
O
J = 18.8 Hz, 1H), 7.25 (d, J = 18.8 Hz, 1H), 7.60 (dd,
J = 6.0, 2.0 Hz, 2H), 8.70 (dd, J = 6.0, 2.0 Hz, 2H); 13C
NMR (100 MHz, CDCl3): d À1.8, 121.8, 137.4, 143.9,
150.7, 152.7, 189.9; UV/vis (CH2Cl2), kmax (e) = 195
(2900), 231 (4500), 277(2300); Ms (EI): 205 [M+]. Anal.
Calcd for C11H15NOSi: C, 64.34; H, 7.36; N, 6.82. Found:
C, 64.30; H, 7.34; N, 6.85.
N
N
PyHCl
MeOH, rt
13
12
5. Sheldrake, P.; Tyrrell, E.; Mintias, S.; Shahrid, I. Synth.
Commun. 2003, 33, 2263–2267.
6. Acid–base: Nineham, W.; Raphael, R. A. J. Chem. Soc.
1949, 118–121; Ishikawa, T.; Mizuta, T.; Hagiwara, K.;
Aikawa, T.; Kudo, T.; Seito, S. J. Org. Chem. 2003, 68,
3702–3705; Coelho, A.; Sotelo, E.; Fraiz, N.; Yanez, M.;
Laguna, R.; Cano, E.; Ravina, E. Bioorg. Med. Chem.
Lett. 2004, 14, 321–324; , Palladium: Arcadi, A.; Cacchi,
S.; Marinelli, F.; Misiti, D. Tetrahedron Lett. 1988, 29,
1457–1460; Saiah, M. K. E.; Pellicciari, R. Tetrahedron
Lett. 1995, 36, 4497–4500; Lu, X.; Ji, J.; Guo, C.; Shen, W.
J. Organomet. Chem. 1992, 428, 259–266; Ruthenium:
Trost, B. M.; Livingston, R. C. J. Am. Chem. Soc. 1995,
117, 9586–9587.
The ynones 2 and 6 originate from oxidation and were
found even when the reaction was carried out under
nitrogen. But the saturated ketone 4e was observed only
when the reaction was carried out in CH2Cl2. The dis-
mutation of 1 to equal amount of ynone 2 and saturated
ketone 4 does not seem to occur in the presence of pyrid-
inium hydrochloride.
References and notes
7. Benn, W. R. J. Org. Chem. 1968, 33, 3113–3118; Corey, E.
J.; Terashima, S. Tetrahedron Lett. 1972, 13, 1815–1816;
Reich, H. J.; Kelly, M. J.; Olson, R. E.; Holtan, R. C.
Tetrahedron 1983, 39, 949–960; Vanderwal, C. D.; Vos-
berg, D. A.; Sorensen, E. J. Org. Let. 2001, 3, 4307–4310;
Sestrick, M. R.; Miller, M.; Hegedus, L. S. J. Am. Chem.
Soc. 1992, 114, 4076–4088.
1. Shi Shun, A. L. K.; Chernick, E. T.; Eisler, S.; Tykwinski,
R. R. J. Org. Chem. 2003, 68, 1339–1347.
2. Rabe, P.; Schuler, W. Chem. Ber. 1948, 81, 139–153;
Turner, R. B.; Woodward, R. B. The Chemistry of
Cinchona Alkaloids. In The Alkaloids; Manske, R. H. F.,
Ed.; Academic Press: New York, 1953; Vol. 3, Chapter 16,
pp 1–63.
8. Massiot, G. Bull. Soc. Chim. Belg. 1990, 99, 717–728.
9. Ramondenc, Y.; Ple, G. Tetrahedron 1993, 10855–10876.
10. Giomi, D.; Piacenta, M.; Brandi, A. Tetrahedron Lett.
2004, 45, 2113–2115.
3. Royer, R.; Demerseman, P. Bull. Soc. Chim. Fr. 1968, 23,
2633–2648.
4. To a solution of product 1d (0.97 mmol) in MeOH
(4.0 mL) was added pyridinhydrochloride (49 lmol) at