ligand charge transfer [d(Re) + p(CO+Br)] → [p*(L)] (MLLCT)
transition. The composition of the HOMO of P2 is similar to
that of the HOMO-1 of P1 in nature, as a result, the lowest lying
transition at 501 nm for P2 is similar to that of P1. The HOMOs
of D1 and D2 are mainly composed of ca. 97.2% R3 and 97.7%
R4, respectively, and the transitions of D1 at 510 nm and D2 at
534 nm should be attributed to the p (R3 for D1 and R4 for
D2) → p*(L¢)transitions. The absorptions with the largest oscil-
lator strength at 370, 296, 322, and 335 nm are in agreement with
the experimental values of 344, 284, 342, and 350 nm for P1, P2,
D1, and D2, respectively. The dominant character of these higher
energy absorptions is the MLLCT and p → p* transitions for
P1 (P2) and D1 (D2), respectively. The excitation of HOMO →
LUMO+2 (98%) contributes to the absorption at 370 nm of P1.
The HOMO of P1 is mainly composed of ca. 20% metal Re(I)
extending their radiative lifetimes. The LQYs of P1 and P2 are
measured to be 0.13 and 0.16 which are much higher than those of
D1 (0.066), D2 (0.0048), and the previously reported Re3 (0.03).
Acknowledgements
The authors are grateful for financial aid from the National
Natural Science Foundation of China (Grant No. 20631040 and
20771099) and the MOST of China (Grant No. 2006CB601103,
2006DFA42610).
References
1 E. Fujita, B. S. Brunschwig, T. Ogata and S. Yanagida, Coord. Chem.
Rev., 1994, 132, 195.
2 N. Sutin, C. Creutz Fujita and E. Comments, Comments Inorg. Chem.,
1997, 19, 67.
3 F. P. A. Johnson, M. W. George, F. Hartle and J. J. Turner,
Organometallics, 1996, 15, 3374.
2
2
2
d orbital (11.4 dz + 5.1dyz + 3.4dx -y ), 14.4% carbonyl group,
and 57.2% bromine group, while its LUMO+2 is p*(L¢) orbital in
nature, thus the absorption is tentatively attributed to the MLLCT
transitions. The excitations of HOMO-8 → LUMO+2 for D1 and
HOMO-4 → LUMO+2 for D2, which contribute 55% and 79% of
the absorptions at 322 and 335 nm, respectively, should be mainly
attributed to p → p* absorptions (Table 3). According to the fact
that the HOMO-4 of P2 is composed of ca. 66% Re d orbital
which is much larger than those of the HOMO of P1 (20%), the
HOMO-8 of D1 (none), and the HOMO-4 of D2 (none), the
MLCT component contribution to the transition with the largest
oscillator strength in P2 should be much larger than those of P1,
D1, and D2. At the same time, the absorptions with moderate
oscillator strength are calculated to be the MLLCT and the p →
p* absorptions for P1 (P2) and D1 (D2), respectively.
4 W. Zhan, J. Alvarez and R. M. Crooks, J. Am. Chem. Soc., 2002, 124,
13265.
5 Y.-M. Cheng, G.-H. Lee, P.-T. Chou, L.-S. Chen, Y. Chi, C.-H. Yang,
Y.-H. Song, S.-Y. Chang, P.-I. Shih and C.-F. Shu, Adv. Funct. Mater.,
2008, 18, 183.
6 V. Balzani and A. Juris, Coord. Chem. Rev., 2001, 211, 97.
7 S. Welter, K. Brunner, J. W. Hofstraat and L. De Cola, Nature, 2003,
421, 54.
8 C. Liu, J. Li, B. Li, Z. Hong, F. Zhao, S. Liu and W. Li, Appl. Phys.
Lett., 2006, 89, 243511.
9 L.-O. Pa˚lsson, R. Beavington, M. J. Frampton, J. M. Lupton, S. W.
Magennis, J. P. J. Markham, J. N. G. Pillow, P. L. Burn and I. D. W.
Samuel, Macromolecules, 2002, 35, 7891.
10 M. Guan, Z. Q. Bian, F. Y. Li, H. Xin and C. H. Huang, New J. Chem.,
2003, 27, 1731.
11 J.-L. Wang, J. Yan, Z.-M. Tang, Q. Xiao, Y. Ma and J. Pei, J. Am. Chem.
Soc., 2008, 130, 9952.
The configurations of HOMO → LUMO of P1, P2, D1, and
D2 are responsible for the corresponding lowest lying triplet →
triplet absorptions at 507, 521, 517, and 543 nm for P1, P2,
D1, and D2, respectively (Table S4†). Therefore these transitions
are similar to the corresponding lowest lying singlet → singlet
absorptions of P1, P2, D1, and D2, respectively. De Angelis et al.33
and Chou et al.34,35 found that the intersystem crossing could be
enhanced by the notable MLCT transition participation, namely,
the phosphorescence (T1 → S0 radiative transition) in which the p
→ p* transitions mixed with MLCT transitions should be greatly
increased by increasing the ratio between MLCT transitions and
the p → p* transitions. Additionally, Abrahamsson et al. also
concluded that the LQY could be partly increased by the larger
proportion of MLCT transitions.36 Our deduction that the greater
contribution of MLCT transitions in P1 and P2 than in D1 and
D2 can be partly attributed to the fact that the LQYs of P1 (0.13)
and P2 (0.16) are higher than those of D1 (0.066) and D2 (0.0048)
in CH2Cl2 is consistent with these conclusions, which suggests
that the purposely designed dendron ligands should be helpful to
improve the PL properties of Re(I) complexes.
12 Y.-J. Pu, R. E. Harding, S. G. Stevenson, E. B. Namdas, C. Tedeschi,
J. P. J. Markham, R. J. Rummings, P. L. Burn and I. D. W. Samuel,
J. Mater. Chem., 2007, 17, 4255.
13 G. Accorsi, A. Listorti, K. Yoosaf and N. Armaroli, Chem. Soc. Rev.,
2009, 38, 1690.
14 T. Xu, R. Lu, X. Liu, P. Chen, X. Qiu and Y. Zhao, Eur. J. Org. Chem.,
2008, 1065.
15 K. Ye, J. Wang, H. Sun, Y. Liu, Z. Mu, F. Li, S. Jiang, J. Zhang,
H. Zhang, Y. Wang and C.-M. Che, J. Phys. Chem. B, 2005, 109,
8008.
16 J. M. Villegas, S. R. Stoyanov and D. P. Rillema, Inorg. Chem., 2002,
41, 6688.
17 G. M. Sheldrick, SHELXTL, version 5.10, Siemens Analytical X-ray
Instruments Inc.: Madison, WI, 1998.
18 SMART and SAINT, Siemens Analytical X-ray Instruments Inc.:
Madison, WI, 1995.
19 G. M. Sheldrick, SADABS, University of Go¨ttingen: Go¨ttingen,
Germany, 1996.
20 E. Runge and E. K. U. Gross, Phys. Rev. Lett., 1984, 52, 997.
21 S. L. Mayo, B. D. Olafso and W. A. Goddard, J. Phys. Chem., 1990, 94,
8897.
22 J. Autschbach, T. Ziegler, S. J. A. Gisbergen and E. J. Baerends, J. Chem.
Phys., 2002, 116, 6930.
23 D. M. Dattelbaum, K. M. Omberg, P. J. Hay, N. L. Gebhart, R. L.
Martin, J. R. Schoonover and T. J. Meyer, J. Phys. Chem. A, 2004, 108,
3527.
24 N. J. Lundin, P. J. Walsh, S. L. Howell, J. J. McGarvey, A. G. Blackman
and K. C. Gordon, Inorg. Chem., 2005, 44, 3551.
25 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C.
Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci,
M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E.
Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo,
R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,
Conclusions
Re(I) complexes P1, P2, D1, andD2 with similar PL spectrapeaked
at 554 nm are synthesized, and their photophysical behavior
is experimentally and theoretically studied. P1, P2, D1, and
D2 display biexponential light-emitting properties with average
lifetimes of 0.26, 0.28, 0.14, and 0.41 ms, respectively, which
indicates that the tert-butyl groups in P2 and D2 are helpful in
This journal is
The Royal Society of Chemistry 2009
Dalton Trans., 2009, 10592–10600 | 10599
©