C O M M U N I C A T I O N S
Table 3. Selectivity of Reactions with Unsymmetrical 1,3-Diynesa
to the general preference for C in reactions with Co,7b Ta,7c Zr,7d
Ni,7g,i and Rh,7h,l where the di- and triynes enter the metallacycle
with the alkynyl substituent R to the metal (biggest lobe of their
LUMO â to the metal).12,13
In conclusion, we have realized an unusually high level of regio-
and site-selectivity in the Alder reactions of 1,3-diynes and 1,3,5-
triynes. The selectivity profile clearly indicates that one of the
alkynyl moieties of 1,3-diynes not participating in the reaction
determines the regiochemistry, whereas the interplay between steric
hindrance and polar substituents at the propargylic sites determines
the site-selectivity. The synthetic scope and utility of these
reactions,14 as well as the effect of the alkyne moiety for controlling
regiochemistry, is under investigation.
Acknowledgment. We thank the NIH (CA106673) and the
Sloan Foundation for partial financial support of this work, as well
as the NSF and NIH for NMR and mass spectrometry instrumenta-
tion. Dr. Monica Ivancic’s help in running an NOE experiment for
compound 13o is greatly acknowledged.
Supporting Information Available: General procedures and
characterization of represented compounds. This material is available
a Reactions performed with 10 mol % of RuCp(CH3CN)3PF6 at 25 °C
in acetone (0.15 M) for 5 min. b Isolated yield. c Ratio between 13p and
its site-selective isomer. d The reason for the formation of the minor isomer
is unclear at this point.
References
(1) Reviews: (a) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. ReV.
2001, 101, 2067. (b) Aubert, C.; Buisine, O.; Malacria, M. Chem. ReV.
2002, 102, 813.
(2) For a review of Alder ene reaction, see: Trost, B. M.; Frederiksen, M.
U.; Rudd, M. T. Angew. Chem., Int. Ed. 2005, 44, 6630.
Scheme 1. Ruthenium-Catalyzed Alder Ene Reaction of Triynes
(3) (a) Trost, B. M.; Indolese, A. J. Am. Chem. Soc. 1993, 115, 4361. (b)
Trost, B. M.; Indolese, A. F.; Mu¨ller, T. J. J.; Treptow, B. J. Am. Chem.
Soc. 1995, 117, 615. (c) Trost, B. M.; Shen, H. C.; Pinkerton, A. B.
Chem.sEur. J. 2002, 10, 2341.
(4) (a) Trost, B. M.; Machacek, M.; Schnaderbeck, M. J. Org. Lett. 2000, 2,
1761. (b) Trost, B. M.; Machacek, M. R. Angew. Chem., Int. Ed. 2002,
41, 4693. (c) Trost, B. M.; Machacek, M. R.; Ball, Z. T. Org. Lett. 2003,
5, 1895.
(5) Hansen, E. C.; Lee, D. J. Am. Chem. Soc. 2005, 127, 3252.
(6) Diynes were synthesized via a CuCl-catalyzed coupling reaction between
terminal alkynes and 1-bromoalkynes: Marino, J. P.; Nguyen, H. N. J.
Org. Chem. 2002, 67, 6841.
or with Boc in 12k maintained the yield and selectivity, giving
13o and 13p, respectively (entries 5 and 6). Unexpectedly, substrate
12l, having a tertiary and a primary propargylic acetoxy groups,
gave a mixture of 13q and 13r with a marginal selectivity (3.5:1),
which indicates that the steric factor alone, unless it is a silyl group,
might not be enough for high selectivity. A boronate containing
diyne 12m showed the same regio- and site-selectivity, generating
product 13s with minor stereochemical scrambling (entry 9).11
Moreover, the regio- and site-selectivity of triynes 15a and 15b
to generate ene products 16a and 16b was found to be identical to
that of 1,3-diynes, except for the formation of minor double ene
product 17b (4%). Resubjection of isolated 16b gave only 15%
yield of 17b with mostly recovered 16b (Scheme 1).
(7) For regioselective metal-catalyzed intermolecular reactions involving
multi-ynes, see: (a) Takeda, A.; Ohno, A.; Kadota, I.; Gevorgyan, V.;
Yamamoto, Y. J. Am. Chem. Soc. 1997, 119, 4547. (b) Varela, J.; Castedo,
L.; Saa´, C. J. Am. Chem. Soc. 1998, 120, 12147. (c) Boring, E.; Sabat,
M.; Finn, M. G.; Grimes, R. N. Organometallics 1998, 17, 3865. (d)
Bredeau, S.; Delmas, G.; Pirio, N.; Richard, P.; Donnadieu, B.; Meunier,
P. Organometallics 2000, 19, 4463. (e) Saito, S.; Yamamoto, Y. Chem.
ReV. 2000, 100, 2901. (f) Camacho, D. H.; Saito, S.; Yamamoto, Y. J.
Am. Chem. Soc. 2002, 124, 924. (g) Jeevanandam, A.; Korivi, R. P.;
Huang, I.; Cheng, C. Org. Lett. 2002, 4, 807. (h) Huddleston, R. R.; Jang,
H.; Krische, M. J. J. Am. Chem. Soc. 2003, 125, 11488. (i) Deaton, K.
R.; Gin, M. S. Org. Lett. 2003, 5, 2477. (j) Jiang, M. X.; Rawat, M.;
Wulff, W. D. J. Am. Chem. Soc. 2004, 126, 5970. (k) Kim, M.; Miller,
R. L.; Lee, D. J. Am. Chem. Soc. 2005, 127, 12818. (l) Cho, C.; Krische,
M. J. Org. Lett. 2006, 8, 3873.
(8) (a) Slugovc, C.; Ruba, E.; Schmid, R.; Kirchner, K.; Mereiter, K. Monatsh.
Chem. 2000, 131, 1241. (b) Trost, B. M.; Older, C. M. Organometallics
2002, 21, 2544.
The observed regioselectivity of Alder ene reactions of 1,3-diynes
and 1,3-5-triynes is believed to be the consequence of the favorable
formation of metallacyclopentene A over C. The strong regio-
directing effect of the adjacent alkyne moiety is the result of its
more effective anion-stabilizing capacity via a conjugated ruthenium
carbenoid character, as shown in zwitterionic resonance form B
compared to that of R2 in the regioisomeric C, as proposed by Trost
for the ene reaction between 4-hydroxy-2-alkynoate and terminal
alkenes.10 However, the sense of regioselectivity for the exclusive
formation of metallacyclopentene A is highly unusual compared
(9) Reactions with 1,3-diynes gave near completion within 5 min as opposed
to 1-4 h for enynes: Trost, B. M.; Papillon, J. P. N.; Nussbaumer, T. J.
Am. Chem. Soc. 2005, 127, 17921.
(10) Trost, B. M.; Mu¨ller, T. J. J.; Martinez, J. J. Am. Chem. Soc. 1995, 117,
1888.
(11) We believe that the lower reactivity of the borylated alkyne is caused by
the electronic deactivation of boronate not by its steric hindrance.
(12) Stockis, A.; Hoffmann, R. J. Am. Chem. Soc. 1980, 102, 2952.
(13) The preferred alkynyl substituent â to a metal in metallacyclobutenes
formed from di- and triynes with metal carbenes; see refs 7j and 7k.
(14) A total synthesis of (3R,9R,10R)-panaxytriol utilizing Alder ene products
13o and 16b will be reported elsewhere.
JA0719430
9
J. AM. CHEM. SOC. VOL. 129, NO. 21, 2007 6693